| [1] | Williams, G.P. (2006) Filling the THz Gap-High Power Sources and Applications. Reports on Progress in Physics, 69, 301-326. https://doi.org/10.1088/0034-4885/69/2/R01
 | 
                     
                                
                                    
                                        | [2] | Agusu L., Idehara, T., Mori, H., et al. (2007) De-sign of a CW ITHz Gyrotron Using a 20th Superconducting Magnet. International Journal of Infrared and Millimeter Waves, 28, 315-328. https://doi.org/10.1007/s10762-007-9215-y
 | 
                     
                                
                                    
                                        | [3] | Manohara, H.M., Siegel, P.H., Marrese, C., et al. (2002) Fabrication and Emitter Measurements for a Nanoklystron: A Novel THz Micro-Tube Source. | 
                     
                                
                                    
                                        | [4] | Gruner, G. (1998) Millimeter and Sub-Millimeter Wave Spectroscopy of Solids. Applied Physics, 74, 51-109. https://doi.org/10.1007/BFb0103417
 | 
                     
                                
                                    
                                        | [5] | Bllattaeharjee, S., Kory, C.L. and Lee, W.J. (2002) Comprehensive Simulation of Compact THz Radiation Sources Using Microfabricated Folded Waveguide TWTS. 2002 IEEE In-ternational Conference on Vacuum Electronics, Monterey, CA, 23-25 April 2002, 26-27. | 
                     
                                
                                    
                                        | [6] | Bllattaeharjee S., Booske, J.H., Kory, C.L., et al. (2003) Investigations of Folded Waveguide TWT Oscillators for THz Radiation. 2003 4th IEEE International Conference on Vacuum Electronics, Seoul, Korea, 28-30 May 2003. | 
                     
                                
                                    
                                        | [7] | Bhattacharjee, S., Booske, J.H., Kory, C.L., et al. (2004) Folded Waveguide Traveling Wave Tube Sources for Terahertz Radiation. IEEE Transactions on Plasma Sciences, 32, 1002-1014. https://doi.org/10.1109/TPS.2004.828886
 | 
                     
                                
                                    
                                        | [8] | McMillan, R.W., Trussell, C.W., Bohlander, R.A., et al. (1991) An Experimental 225GHz Pulsed Coherent Radar. IEEE Transactions on Microwave Theory and Techniques, 39, 555-562. https://doi.org/10.1109/22.75300
 | 
                     
                                
                                    
                                        | [9] | Dave, B., Peter, H., Mark, H., et al. (2005) Extended Inter-action Klystron for Submillimeter Applications. The Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, Williamsburg, VA, 84. | 
                     
                                
                                    
                                        | [10] | Albert, R., Peter, H., Mark, H., et al. (2006) Extended Interaction Klystron for Submillimeter Applications. 2006 IEEE International Conference on Vacuum Electronics, Monterey, CA, 25-27 April 2006, 191. | 
                     
                                
                                    
                                        | [11] | Bratman, V.L., Dumesh, B.S. and Fedotov, A.F. (2002) Broadband Orotron Operation at Millimeter and Sub-Millimeter Waves. International Journal of Infrared and Millimeter Waves, 23, 1595-1601. https://doi.org/10.1109/22.75300
 | 
                     
                                
                                    
                                        | [12] | Carr, G.L., Martin, C., Wayne, R., et al. (2002) High-Power Terahertz Radiation from Relativistic Electron. Nature, 420, 153-156. https://doi.org/10.1038/nature01175
 | 
                     
                                
                                    
                                        | [13] | Andrews, H.L. and Brau, C.A. (2004) Gain of a Smith-Purcell Free-Electron Laser. Physical Review Special Topics-Accelerators and Beams, 7, Article ID: 070701. https://doi.org/10.1103/PhysRevSTAB.7.070701
 | 
                     
                                
                                    
                                        | [14] | Doucas, G., Blackmore, V., Ottewell, B., et al. (2006) Longitudinal Electron Bunch Profile Diagnostics at 45 MeV Using Coherent Smith-Purcell Radiation. Physical Re-view Special Topics-Accelerators and Beams, 9, Article ID: 092801. https://doi.org/10.1103/PhysRevSTAB.9.092801
 | 
                     
                                
                                    
                                        | [15] | Shin, Y., So, J., Jang, K., et al. (2007) Evanescent Tunneling of an Effective Surface Plasmon Excited by Convection Electrons. Physical Review Letters, 99, Article ID: 147402. https://doi.org/10.1103/PhysRevLett.99.147402
 | 
                     
                                
                                    
                                        | [16] | Korbly, S.E., Kesar, A.S., Sirigiri, J.R. and Temkin, R.J. (2005) Observation of Frequency-Locked Coherent Terahertz Smith-Purcell Radiation. Physical Re-view Letters, 94, Article ID: 054803. https://doi.org/10.1103/PhysRevLett.94.054803
 | 
                     
                                
                                    
                                        | [17] | Smith, S.J. and Purcell, E.M. (1953) Visible Light from Localized Surface Charges Moving across a Grating. Physical Review, 92, 1069. https://doi.org/10.1103/PhysRev.92.1069
 | 
                     
                                
                                    
                                        | [18] | Estakhri, N.M., Edwards, B. and Engheta, N. (2019) In-verse-Designed Metastructures that Solve Equations. Science, 363, 1333-1338. https://doi.org/10.1126/science.aaw2498
 | 
                     
                                
                                    
                                        | [19] | Lee, I.-H., Yoo, D., Avouris, P., Low, T. and Oh, S.-H. (2019) Graphene Acoustic Plasmon Resonator for Ultrasensitive Infrared Spectroscopy. Nature Nanotechnology, 14, 313-319. https://doi.org/10.1038/s41565-019-0363-8
 | 
                     
                                
                                    
                                        | [20] | Liang, Y., Du, Y., Su, X., et al. (2018) Observation of Coherent Smith-Purcell and Transition Radiation Driven by Single Bunch and Micro-Bunched Electron Beams. Applied Physics Letters, 112, Article ID: 053501. https://doi.org/10.1063/1.5009396
 | 
                     
                                
                                    
                                        | [21] | Zhang, H., Konoplev, I.V., Lancaster, A.J., et al. (2017) Non-Destructive Measurement and Monitoring of Separation of Charged Particle Micro-Bunches. Applied Physics Letters, 111, Article ID: 043505. https://doi.org/10.1063/1.4996180
 | 
                     
                                
                                    
                                        | [22] | Urata, J., Goldstein, M., Kimmitt, M.F., et al. (1998) Superradiant Smith-Purcell Emission. Physical Review Letters, 80, 516-519. https://doi.org/10.1103/PhysRevLett.80.516
 | 
                     
                                
                                    
                                        | [23] | Taga, S., Inafune, K. and Sano, E. (2007) Analysis of Smith-Purcell Radiation in Optical Region. Optics Express, 15, 16222-16229. https://doi.org/10.1364/OE.15.016222
 | 
                     
                                
                                    
                                        | [24] | Zhang, P., Zhang, Y. and Tang, M. (2017) Enhanced THz Smith-Purcell Radiation Based on the Grating Grooves with Holes Array. Optics Express, 25, 10901-10910. https://doi.org/10.1364/OE.25.010901
 | 
                     
                                
                                    
                                        | [25] | Zhan, T., Han, D., Hu, X., et al. (2014) Tunable Terahertz Radi-ation from Graphene Induced by Moving Electrons. Physical Review B, 89, Article ID: 245434. https://doi.org/10.1103/PhysRevB.89.245434
 | 
                     
                                
                                    
                                        | [26] | Liu, S., Zhang, C., Hu, M., et al. (2014) Coherent and Tunable Terahertz Radiation from Graphene Surface Plasmon Polaritons Excited by an Electron Beam. Applied Physics Letters, 104, 1-5. https://doi.org/10.1063/1.4879017
 | 
                     
                                
                                    
                                        | [27] | Zhang, H., Konoplev, I., Doucas, G., et al. (2018) Concept of a Tunable Source of Coherent THz Radiation Driven by a Plasma Modulated Electron Beam. Physics of Plasmas, 25, Article ID: 043111. https://doi.org/10.1063/1.5017551
 | 
                     
                                
                                    
                                        | [28] | Liu, L., Chang, H., Zhang, C., et al. (2017) Terahertz and Infrared Smith-Purcell Radiation from Babinetmeta Surfaces: Loss and Efficiency. Physical Review B, 96, Article ID: 165435. https://doi.org/10.1103/PhysRevB.96.165435
 | 
                     
                                
                                    
                                        | [29] | Zhang, P., Wang, L., Zhang, Y., Aimidula, A. and Tang, M. (2019) Intensive Vertical Orientation Smith-Purcell Radiation from the 2D Well-Array Metasurface. Optics Express, 27, 3952-3962. https://doi.org/10.1364/OE.27.003952
 | 
                     
                                
                                    
                                        | [30] | Lan, Y., Chen, J. and Chen, C. (2019) Surface Plasmons Manip-ulated Smith-Purcell Radiation on Yagi-Uda Nanoantenna Arrays. Optics Express, 27, 32567-32577. https://doi.org/10.1364/OE.27.032567
 | 
                     
                                
                                    
                                        | [31] | Su, Z., Cheng, F., Li, L. and Liu, Y. (2019) Complete Control of Smith-Purcell Radiation by Graphene Metasurfaces. ACS Photonics, 6, 1947-1954. https://doi.org/10.1021/acsphotonics.9b00251
 | 
                     
                                
                                    
                                        | [32] | Shin, Y.M., So, J.K., Jang, K.H., Won, J.H., Srivastava, A. and Park, G.S. (2007) Superradiant Terahertz Smith-Purcell Radiation from Surface Plasmon Excited by Counter-streaming Electron Beams. Applied Physics Letters, 90, Article ID: 031502. https://doi.org/10.1063/1.2432270
 | 
                     
                                
                                    
                                        | [33] | Hoang, P.D., Andonian, G., Gadjev, I., Naranjo, B., Sakai, Y., Sudar, N., Williams, O., Fedurin, M., Kusche, K., Swinson, C., Zhang, P. and Rosenzweig, J.B. (2018) Experimental Characterization of Electron-Beam-Driven Wakefield Modes in a Dielectric-Woodpile Cartesian Symmetric Struc-ture. Physical Review Letters, 120, Article ID: 164801. https://doi.org/10.1103/PhysRevLett.120.164801
 | 
                     
                                
                                    
                                        | [34] | Okajima, A. and Matsui, T. (2014) Electron-Beam Induced Terahertz Radiation from Graded Metallic Grating. Optics Express, 22, 17490-17496. https://doi.org/10.1364/OE.22.017490
 | 
                     
                                
                                    
                                        | [35] | Zhang, P., Zhang, Y., Hu, M., et al. (2012) Diffraction Radiation of a Sub-Wavelength Hole Array with Dielectric Medium Loading. 2012 International Conference on Infrared, Millimeter and Terahertz Waves, Wollongong, Australia, September 2012. https://doi.org/10.1109/IRMMW-THz.2012.6380342
 | 
                     
                                
                                    
                                        | [36] | Lin, D., Fan, P., Hasman, E. and Brongersma, M.L. (2014) Dielectric Gradient Metasurface Optical Elements. Science, 345, 298-302. https://doi.org/10.1126/science.1253213
 | 
                     
                                
                                    
                                        | [37] | Wen, D., Chen, S., Yue, F., Chan, K., Chen, M., Ardron, M. and Li, G. (2016) Metasurface Device with Helicity-Dependent Functionality. Advanced Optical Materials, 4, 321-327. https://doi.org/10.1002/adom.201500498
 | 
                     
                                
                                    
                                        | [38] | Liu, L., Chang, H., Zhang, C., Song, Y. and Hu, X. (2017) Terahertz and Infrared Smith-Purcell Radiation from Babinetmetasurfaces: Loss and Efficiency. Physical Review B, 96, Article ID: 165435. https://doi.org/10.1103/PhysRevB.96.165435
 | 
                     
                                
                                    
                                        | [39] | Song, Y., Du, J., Jiang, N., Liu, L. and Hu, X. (2018) Ef-ficient Terahertz and Infrared Smith-Purcell Radiation from Metal-Slot Metasurfaces. Optics Letters, 43, 3858-3861. https://doi.org/10.1364/OL.43.003858
 |