|
[1]
|
Barthlott, W. and Neinhuis, C. (1997) Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces. Planta, 202, 1-8. [Google Scholar] [CrossRef]
|
|
[2]
|
%Parker, A.R. and Lawrence, C.R. (2001). Water Capture by a Desert Beetle. Nature, 414, 33-34. [CrossRef] [PubMed]
|
|
[3]
|
%Feng, X.Q., Gao, X., Wu, Z., Jiang, L. and Zheng, Q.S. (2007) Su-perior Water Repellency of Water Strider Legs with Hierarchical Structures? Experiments and Analysis. Langmuir, 23, 4892-4896. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
%Zheng, Y., Gao, X. and Jiang, L. (2007) Directional Adhesion of Superhydrophobic Butterfly Wings. Soft Matter, 3, 178-182. [Google Scholar] [CrossRef]
|
|
[5]
|
%Dai, X., Sun, N., Nielsen, S.O., Stogin, B.B. and Wong, T.S. (2018) Hydrophilic Directional Slippery Rough Surfaces for Water Harvesting. Science Advances, 4, eaaq0919. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
%Wang, S., Liu, K., Yao, X. and Jiang, L. (2015) Bioinspired Surfaces with Superwettability: New Insight on Theory, Design, and Applications. Chemical Reviews, 115, 8230-8293. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
%Liu, K., Yao, X. and Jiang, L. (2010) Recent Develop-ments in Bio-Inspired Special Wettability. Chemical Society Reviews, 39, 3240-3255. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
%Liu, M., Wang, S. and Jiang, L. (2017) Nature-Inspired Superwetta-bility Systems. Nature Reviews Materials, 2, Article No. 17036. [Google Scholar] [CrossRef]
|
|
[9]
|
%Yin, K., Du, H., Dong, X., Wang, C., Duan, J.-A. and He, J. (2017) A Simple Way to Achieve Bioinspired Hybrid Wettability Surface with Micro/Nanopatterns for Efficient Fog Collection. Nanoscale, 9, 14620-14626. [Google Scholar] [CrossRef]
|
|
[10]
|
%Fadeeva, E., Truong, V.K., Stiesch, M., Chichkov, B.N., Craw-ford, R.J., Wang, J. and Ivanova, E.P. (2011) Bacterial Retention on Superhydrophobic Titanium Surfaces Fabricated by Femtosecond Laser Ablation. Langmuir, 27, 3012-3019. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
%Tuteja, A., Choi, W., Ma, M., Mabry, J.M., Mazzella, S.A., Rutledge, G.C., McKinley, G.H. and Cohen, R.E. (2007) Designing Superoleophobic Surfaces. Science, 318, 1618-1622. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
%Liu, T.L. and Kim, C.-J.C. (2014) Turning a Surface Su-perrepellent Even to Completely Wetting Liquids. Science, 346, 1096-1100. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
%Feng, L., Li, S.H., Li, Y., Li, H.J. and Zhu, D.B. (2003) Su-per-Hydrophobic Surfaces: From Natural to Artificial. ChemInform, 14, 1857-1860. [Google Scholar] [CrossRef]
|
|
[14]
|
%Deng, X., Mammen, L., Butt, H.J. and Vollmer, D. (2012) Candle Soot as a Template for a Transparent Robust Superamphiphobic Coating. Science, 335, 67-70. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
%Wong, T.S., Kang, S.H., Tang, S.K.Y., Smythe, E.J., Hatton, B.D., Grinthal, A., et al. (2011) Bioinspired Self-Repairing Slippery Surfaces with Pressure-Stable Omniphobicity. Nature, 477, 443-447. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
%Li, X.P., Sun, Y.L., Xu, Y.Y. and Chao, Z.S. (2018) UV-Resistant and Thermally Stable Superhydrophobic CeO2 Nanotubes with High Water Adhesion. Small, 14, e1801040. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
%Azimi, G., Kwon, H.M. and Varanasi, K.K. (2014) Superhydrophobic Surfaces by Laser Ablation of Rare-Earth Oxide Ceramics. MRS Communications, 4, 1-5. [Google Scholar] [CrossRef]
|
|
[18]
|
%Nakayama, K., Hiraga, T., Zhu, C., et al. (2017) Facile Preparation of Self-Healing Superhydrophobic CeO2 Surface by Electrochemical Processes. Applied Surface Science, 423, 68-976. [Google Scholar] [CrossRef]
|
|
[19]
|
%Li, J., Jing, Z., Yang, Y., Wang, Q. and Lei, Z. (2014) From Cassie State to Gecko State: A Facile Hydrothermal Process for the Fabrication of Superhydrophobic Surfaces with Controlled Sliding Angles on Zinc Substrates. Surface and Coatings Technology, 258, 973-978. [Google Scholar] [CrossRef]
|
|
[20]
|
%Feng, X., Feng, L., Jin, M., Zhai, J., Jiang, L. and Zhu, D. (2004) Reversible Super-Hydrophobicity to Super-Hydrophilicity Transition of Aligned ZnO Nanorod Films. Journal of the American Chemical Society, 126, 62-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
%Feng, X., Zhai, J. and Jiang, L. (2005) The Fabrication and Switch-able Superhydrophobicity of TiO2 Nanorod Films. Angewandte Chemie, 117, 5245-5248. [Google Scholar] [CrossRef]
|
|
[22]
|
%Zhu, W., Feng, X., Feng, L. and Jiang, L. (2006) UV-Manipulated Wettability between Superhydrophobicity and Superhydrophilicity on a Transparent and Conduc-tive SnO2 Nanorod Film. Chemical Communications (Camb), 26, 2753-2755. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
%Lim, H.S., Kwak, D., Lee, D.Y., Lee, S.G. and Cho, K. (2007) Uv-Driven Reversible Switching of a Roselike Vanadium Oxide Film between Superhydrophobicity and Superhy-drophilicity. Journal of the American Chemical Society, 129, 4128-4129. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
%Pan, S.J., Guo, R., Björnmalm, M., Richardson, J.J., Li, L., Peng, C., Bertleff-Zieschang, N., Xu, W.J., Jiang, J.H. and Caruso, F. (2018) Coatings Super-Repellent to Ultralow Surface Tension Liquids. Nature Materials, 17, 1040-1047. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
%Yuan, Z., Bin, J., Wang, X., Peng, C., Wang, M., Xing, S., Xiao, J., Zeng, J., Xiao, X., Fu, X. and Chen, H. (2014) Fabrication of Superhydrophobic Surface with Hierarchical Multi-Scale Structure on Copper Foil. Surface and Coatings Technology, 254, 151-156. [Google Scholar] [CrossRef]
|
|
[26]
|
%Liu, K., Li, Z., Wang, W. and Jiang, L. (2011) Facile Creation of Bio-Inspired Superhydrophobic Ce-Based Metallic Glass Surfaces. Applied Physics Letters, 99, Article ID: 261905. [Google Scholar] [CrossRef]
|
|
[27]
|
%Ishizaki, T., Masuda, Y. and Sakamoto, M. (2011) Corrosion Resistance and Durability of Superhydrophobic Surface Formed on Magnesium Alloy Coated with Nanostructured Cerium Oxide Film and Fluoroalkylsilane Molecules in Corrosive NaCl Aqueous Solution. Langmuir, 27, 4780-4788. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
%Liu, C., Su, F., Liang, J. and Huang, P. (2014) Facile Fabrication of Superhydrophobic Cerium Coating with Micro-Nano Flower-Like Structure and Excellent Corrosion Resistance. Surface and Coatings Technology, 258, 580-586. [Google Scholar] [CrossRef]
|
|
[29]
|
%Peng, C., Chen, Z. and Tiwari, M.K. (2018) All-Organic Superhydrophobic Coatings with Mechanochemical Robustness and Liquid Impalement Resistance. Nature Mate-rials, 17, 355-360. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
%Xu, W., Song, J., Sun, J., Lu, Y. and Yu, Z. (2011) Rapid Fabrication of Large-Area, Corrosion-Resistant Superhydrophobic Mg Alloy Surfaces. ACS Applied Materials & Interfaces, 3, 4404-4414. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
%Song, J., Xu, W., Liu, X., Lu, Y., Wei, Z. and Wu, L. (2012) Ultrafast Fabrication of Rough Structures Required by Superhydrophobic Surfaces on Al Substrates Using an Immersion Method. Chemical Engineering Journal, 211-212, 143-152. [Google Scholar] [CrossRef]
|
|
[32]
|
%Guo, X., Li, X., Wei, Z., Li, X. and Niu, L. (2016) Rapid Fabrication and Characterization of Superhydrophobic Tri-Dimensional Ni/Al Coatings. Applied Surface Science, 387, 8-15. [Google Scholar] [CrossRef]
|