|
[1]
|
Crichton, R. (2016) The Essential Role of Iron in Biology. John Wiley & Sons Ltd., New York.
|
|
[2]
|
Torti, S.V. and Torti, F.M. (2013) Iron and Cancer: More Ore to Be Mined. Nature Reviews Cancer, 13, 342-355. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Zhang, D.L., Ghosh, M.C. and Rouault, T.A. (2014) The Physiological Functions of Iron Regulatory Proteins in Iron Homeostasis: An Update. Frontiers in Pharmacology, 5, 124. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Stevens, R.G., Graubard, B.I., Micozzi, M.S., et al. (2000) Moder-ate Elevation of Body Iron Level and Increased Risk of Cancer Occurrence and Death, Hepatitis B and the Prevention of Primary Cancer of The Liver. Selected Publications of Baruch S Blumberg, World Scientific, Singapore, 447-452. [Google Scholar] [CrossRef]
|
|
[5]
|
Akatsuka, S., Yamashita, Y., Ohara, H., et al. (2012) Fenton Reaction Induced Cancer in Wild Type Rats Recapitulates Genomic Alterations Observed in Human Cancer. PLoS ONE, 7, e43403. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Wang, J., Yin, D., Xie, C., et al. (2014) The Iron Chelator Dp44mT Inhibits Hepatocellular Carcinoma Metastasis via N-Myc Downstream-Regulated Gene 2 (NDRG2)/gp130/STAT3 Pathway. Oncotarget, 5, 8478. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Guo, W., Zhang, S., Chen, Y., et al. (2015) An Important Role of the Hepcidin-Ferroportin Signaling in Affecting Tumor Growth and Metastasis. Acta biochimica et biophysica Sinica, 47, 703-715. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Eckenroth, B.E., Steere, A.N., Chasteen, N.D., et al. (2011) How the Binding of Human Transferrin Primes the Transferrin Receptor Potentiating Iron Release at Endosomal pH. Proceedings of the National Academy of Sciences, 108, 13089-13094. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Neiveyans, M., Melhem, R., Arnoult, C., et al. (2019) A Recycling Anti-Transferrin Receptor-1 Monoclonal Antibody as an Efficient Therapy for Erythroleukemia through Target Up-Regulation and Antibody-Dependent Cytotoxic Effector Functions. MAbs, 593-605. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Jefferies, W.A., Brandon, M.R., Hunt, S.V., et al. (1984) Transferrin Receptor on Endothelium of Brain Capillaries. Nature, 312, 162-163. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Pardridge, W.M., Eisenberg, J. and Yang, J. (1987) Human Blood-Brain Barrier Transferrin Receptor. Metabolism, 36, 892-895. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Skarlatos, S., Yoshikawa, T. and Pardridge, W.M. (1995) Transport of [125I]Transferrin through the Rat Blood-Brain Barrier. Brain Research, 683, 164-171. [Google Scholar] [CrossRef]
|
|
[13]
|
Friden, P.M., Walus, L.R., Musso, G.F., et al. (1991) An-ti-Transferrin Receptor Antibody and Antibody-Drug Conjugates Cross the Blood-Brain Barrier. Proceedings of the National Academy of Sciences, 88, 4771-4775. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Hersom, M., Helms, H.C., Pretzer, N., et al. (2016) Transferrin Re-ceptor Expression and Role in Transendothelial Transport of Transferrin in Cultured Brain Endothelial Monolayers. Molecular and Cellular Neuroscience, 76, 59-67. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Morris, C., Keith, A., Edwardson, J., et al. (1992) Uptake and Distribution of Iron and Transferrin in the Adult Rat Brain. Journal of Neurochemistry, 59, 300-306. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Fishman, J., Rubin, J., Handrahan, J., et al. (1987) Re-ceptor-Mediated Transcytosis of Transferrin across the Blood-Brain Barrier. Journal of Neuroscience Research, 18, 299-304. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lee, H.J., Engelhardt, B., Lesley, J., et al. (2000) Targeting Rat Anti-Mouse Transferrin Receptor Monoclonal Antibodies through Blood-Brain Barrier in Mouse. Journal of Pharmacology and Experimental Therapeutics, 292, 1048-1052.
|
|
[18]
|
Fu, A., Hui, E.K.-W., Lu, J.Z., et al. (2011) Neuroprotection in Stroke in the Mouse with Intravenous Erythropoietin-Trojan Horse Fusion Protein. Brain Research, 1369, 203-207. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhou, Q.H., Fu, A., Boado, R.J., et al. (2011) Receptor-Mediated Abeta Amyloid Antibody Targeting to Alzheimer’s Disease Mouse Brain. Molecular Pharmacology, 8, 280-285. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Zhou, Q.H., Hui, E.K., Lu, J.Z., et al. (2011) Brain Penetrating IgG-Erythropoietin Fusion Protein Is Neuroprotective Following Intravenous Treatment in Parkinson’s Disease in the Mouse. Brain Research, 1382, 315-320. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Boado, R.J., Hui, E.K., Lu, J.Z., et al. (2011) Reversal of Ly-sosomal Storage in Brain of Adult MPS-I Mice with Intravenous Trojan Horse-Iduronidase Fusion Protein. Molecular Pharmacology, 8, 1342-1350. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Manich, G., Cabezón, I., Del Valle, J., et al. (2013) Study of the Transcytosis of an Anti-Transferrin Receptor Antibody with a Fab’cargo across the Blood-Brain Barrier in Mice. Eu-ropean Journal of Pharmaceutical Sciences, 49, 556-564. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Paterson, J. and Webster, C.I. (2016) Exploiting Transferrin Receptor for Delivering Drugs across the Blood-Brain Barrier. Drug Discovery Today: Technologies, 20, 49-52. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Niewoehner, J., Bohrmann, B., Collin, L., et al. (2014) Increased Brain Penetration and Potency of a Therapeutic Antibody Using a Monovalent Molecular Shuttle. Neuron, 81, 49-60. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Bien-Ly, N., Yu, Y.J., Bumbaca, D., et al. (2014) Transferrin Receptor (TfR) Trafficking Determines Brain Uptake of TfR Antibody Affinity Variants. Journal of Experimental Medicine, 211, 233-244. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Yu, Y.J., Zhang, Y., Kenrick, M., et al. (2011) Boosting Brain Uptake of a Therapeutic Antibody by Reducing Its Affinity for a Transcytosis Target. Science Translational Medicine, 3, 84ra44. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Haqqani, A.S., Thom, G., Burrell, M., et al. (2018) Intracellular Sorting and Transcytosis of the Rat Transferrin Receptor Antibody OX26 across the Blood-Brain Barrier in Vitro Is Dependent on Its Binding Affinity. Journal of Neurochemistry, 146, 735-752. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Sade, H., Baumgartner, C., Hugenmatter, A., et al. (2014) A Human Blood-Brain Barrier Transcytosis Assay Reveals Antibody Transcytosis Influenced by pH-Dependent Receptor Binding. PLoS ONE, 9, e96340. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
The BDNF Study Group (1999) A Controlled Trial of Recom-binant Methionyl Human BDNF in ALS: The BDNF Study Group (Phase III). Neurology, 52, 1427-1433. [Google Scholar] [CrossRef]
|
|
[30]
|
Miller, R.G., Petajan, J.H., Bryan, W.W., et al. (1996) A Place-bo-Controlled Trial of Recombinant Human Ciliary Neurotrophic (rhCNTF) Factor in Amyotrophic Lateral Sclerosis. rhCNTF ALS Study Group. Annals of Neurology, 39, 256-260. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Bogousslavsky, J., Victor, S.J., Salinas, E.O., et al. (2002) Fiblast (Trafermin) in Acute Stroke: Results of the European-Australian Phase II/III Safety and Efficacy Trial. Cerebrovascular Diseases, 14, 239-251. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Ehrenreich, H., Weissenborn, K., Prange, H., et al. (2009) Recombinant Human Erythropoietin in the Treatment of Acute Ischemic Stroke. Stroke, 40, e647-e656. [Google Scholar] [CrossRef]
|
|
[33]
|
Nutt, J.G., Burchiel, K.J., Comella, C.L., et al. (2003) Randomized, Double-Blind Trial of Glial Cell Line-Derived Neurotrophic Factor (GDNF) in PD. Neurology, 60, 69-73. [Google Scholar] [CrossRef]
|
|
[34]
|
Salloway, S., Sperling, R., Fox, N.C., et al. (2014) Two Phase 3 Trials of Bapineuzumab in Mild-to-Moderate Alzheimer’s Disease. The New England Journal of Medicine, 370, 322-333. [Google Scholar] [CrossRef]
|
|
[35]
|
Yu, Y.J., Atwal, J.K., Zhang, Y., et al. (2014) Therapeutic Bispecific Antibodies Cross the Blood-Brain Barrier in Nonhuman Primates. Science Translational Medicine, 6, 261ra154. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Sonoda, H., Morimoto, H., Yoden, E., et al. (2018) A Blood-Brain-Barrier-Penetrating Anti-Human Transferrin Receptor Antibody Fusion Protein for Neuronopathic Mucopolysaccharidosis II. Molecular Therapy, 26, 1366-1374. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Okuyama, T., Eto, Y., Sakai, N., et al. (2019) Idu-ronate-2-Sulfatase with Anti-Human Transferrin Receptor Antibody for Neuropathic Mucopolysaccharidosis II: A Phase 1/2 Trial. Molecular Therapy, 27, 456-464. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Kim, S.-S., Rait, A., Kim, E., et al. (2014) A Nanoparticle Car-rying the p53 Gene Targets Tumors Including Cancer Stem Cells, Sensitizes Glioblastoma to Chemotherapy and Im-proves Survival. ACS Nano, 8, 5494-5514. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Kim, S.-S., Rait, A., Kim, E., et al. (2015) A Tumor-Targeting p53 Nanodelivery System Limits Chemoresistance to Temozolomide Prolonging Survival in a Mouse Model of Glioblastoma Multiforme. Nanomedicine: Nanotechnology, Biology and Medicine, 11, 301-311. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Ramalho, M.J., Sevin, E., Gosselet, F., et al. (2018) Recep-tor-Mediated PLGA Nanoparticles for Glioblastoma Multiforme Treatment. The International Journal of Pharmaceutics, 545, 84-92. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Marino, A., Almici, E., Migliorin, S., et al. (2019) Piezoelectric Barium Titanate Nanostimulators for the Treatment of Glioblastoma Multiforme. Journal of Colloid and Interface Science, 538, 449-461. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Leoh, L.S., Kim, Y.K., Candelaria, P.V., et al. (2018) Efficacy and Mechanism of Antitumor Activity of an Antibody Targeting Transferrin Receptor 1 in Mouse Models of Human Multiple Myeloma. The Journal of Immunology, 200, 3485-3494. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Daniels-Wells, T.R., Candelaria, P.V., Leoh, L.S., et al. (2020) An IgG1 Version of the Anti-Transferrin Receptor 1 Antibody ch128. 1 Shows Significant Antitumor Activity against Different Xenograft Models of Multiple Myeloma: A Brief Communication. Journal of Immunotherapy, 43, 48-52. [Google Scholar] [CrossRef]
|
|
[44]
|
Daniels-Wells, T.R., Widney, D.P., Leoh, L.S., et al. (2015) Efficacy of an Anti-Transferrin Receptor Antibody against AIDS-Related Non-Hodgkin Lymphoma: A Brief Commu-nication. Journal of Immunotherapy, 38, 307. [Google Scholar] [CrossRef]
|
|
[45]
|
Shimosaki, S., Nakahata, S., Ichikawa, T., et al. (2017) De-velopment of a Complete Human IgG Monoclonal Antibody to Transferrin Receptor 1 Targeted for Adult T-Cell Leu-kemia/Lymphoma. Biochemical and Biophysical Research Communications, 485, 144-151. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Chen, X., Yi, B., Liu, Z., et al. (2020) Global, Regional and Na-tional Burden of Pancreatic Cancer, 1990 to 2017: Results from the Global Burden of Disease Study 2017. Pancrea-tology, 20, 462-469. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Henry, K.E., Dacek, M.M., Dilling, T.R., et al. (2019) A PET Imaging Strategy for Interrogating Target Engagement and Oncogene Status in Pancreatic Cancer. Clinical Cancer Research, 25, 166-176. [Google Scholar] [CrossRef]
|
|
[48]
|
Sugyo, A., Tsuji, A.B., Sudo, H., et al. (2017) Uptake of 111In-Labeled Fully Human Monoclonal Antibody TSP-A18 Reflects Transferrin Receptor Expression in Normal Or-gans and Tissues of Mice. Oncology Reports, 37, 1529-1536. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Sugyo, A., Tsuji, A.B., Sudo, H., et al. (2015) Preclinical Evaluation of 89Zr-Labeled Human Antitransferrin Receptor Monoclonal Antibody as a PET Probe Using a Pancreatic Cancer Mouse Model. Nuclear Medicine Communications, 36, 286-294. [Google Scholar] [CrossRef]
|
|
[50]
|
Sugyo, A., Tsuji, A.B., Sudo, H., et al. (2015) Evaluation of Efficacy of Radioimmunotherapy with 90Y-Labeled Fully Human Anti-Transferrin Receptor Monoclonal Antibody in Pancreatic Cancer Mouse Models. PLoS ONE, 10, e0123761. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Camp, E., Wang, C., Little, E., et al. (2013) Transferrin Receptor Targeting Nanomedicine Delivering Wild-Type p53 Gene Sensitizes Pancreatic Cancer to Gemcitabine Therapy. Cancer Gene Therapy, 20, 222-228. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Lyons, V.J., Helms, A. and Pappas, D. (2019) The Effect of Protein Ex-pression on Cancer Cell Capture Using the Human Transferrin Receptor (CD71) as an Affinity Ligand. Analytica Chimica Acta, 1076, 154-161. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Li, W., Zhang, Y., Reynolds, C.P., et al. (2017) Microfluidic Sep-aration of Lymphoblasts for the Isolation of Acute Lymphoblastic Leukemia Using the Human Transferrin Receptor as a Capture Target. Analytical Chemistry, 89, 7340-7347. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Lyons, V.J. and Pappas, D. (2019) Affinity Separation and Subsequent Terminal Differentiation of Acute Myeloid Leukemia Cells Using the Human Transferrin Receptor (CD71) as a Capture Target. Analyst, 144, 3369-3380. [Google Scholar] [CrossRef]
|
|
[55]
|
Zhang, H., Yang, Y., Li, X., et al. (2018) Frequency-Enhanced Transferrin Receptor Antibody-Labelled Microfluidic Chip (FETAL-Chip) Enables Efficient Enrichment of Circulating Nucleated Red Blood Cells for Non-Invasive Prenatal Diagnosis. Lab Chip, 18, 2749-2756. [Google Scholar] [CrossRef]
|