| [1] | Naeem, F., Naeem, S., Zhao, Z., Shu, G.G., Zhang, J., Mei, Y.M. and Huang, G.S. (2020) Atomic Layer Deposition Synthesized ZnO Nanomembranes: A Facile Route towards Stable Supercapacitor Electrode for High Capacitance. Journal of Power Sources, 451, Article ID: 227740. https://doi.org/10.1016/j.jpowsour.2020.227740
 | 
                     
                                
                                    
                                        | [2] | Fahimi, Z. and Moradlou, O. (2020) Fabrication of ZnO@C Foam: A Flexible Free-Standing Electrode for Energy Storage De-vices. Materials & Design, 189, Article ID: 108525. https://doi.org/10.1016/j.matdes.2020.108525
 | 
                     
                                
                                    
                                        | [3] | Anandhi, P., Jawahar Senthil Kumar, V. and Harikrishnan, S. (2019) Preparation and Enhanced Capacitive Behavior of Ni-ZnO Nanocomposite as Electrode for Supercapacitor. Materials Today: Proceedings, 9, 361-370. https://doi.org/10.1016/j.matpr.2019.02.165
 | 
                     
                                
                                    
                                        | [4] | Alev, O., Sarıca, N., Özdemir, O., Arslan, L.C., Büyükköse, S. and Öztürk, Z.Z. (2020) Cu-Doped ZnO Nanorods Based QCM Sensor for Hazardous Gases. Journal of Alloys and Compounds, 826, Article ID: 154177. https://doi.org/10.1016/j.jallcom.2020.154177
 | 
                     
                                
                                    
                                        | [5] | Chao, J.F., Chen, Y.H., Xing, S.M., Zhang, D.L. and Shen, W.L. (2019) Facile Fabrication of ZnO/C Nanoporous Fibers and ZnO Hollow Spheres for High Performance Gas Sensor. Sensors and Actuators B: Chemical, 298, Article ID: 126927. https://doi.org/10.1016/j.snb.2019.126927
 | 
                     
                                
                                    
                                        | [6] | Serrà, A., Pip, P., Gómez, E. and Philippe, L. (2020) Efficient Magnetic Hybrid ZnO-Based Photocatalysts for Visible-Light-Driven Removal of Toxic Cyanobacteria Blooms and Cyanotoxins. Applied Catalysis B: Environmental, 268, Article ID: 118745. https://doi.org/10.1016/j.apcatb.2020.118745
 | 
                     
                                
                                    
                                        | [7] | Dhandapani, P., Prakash, A.A., AlSalhi, M.S., Maruthamuthu, S., Devanesan, S. and Rajasekar, A. (2020) Ureolytic Bacteria Mediated Synthesis of Hairy ZnO Nanostructure as Photocatalyst for Decolorization of Dyes. Materials Chemistry and Physics, 243, Article ID: 122619. https://doi.org/10.1016/j.matchemphys.2020.122619
 | 
                     
                                
                                    
                                        | [8] | Ganesh, M., Lee, S.G., Jayaprakash, J., Mohankumar, M. and Jang, H.T. (2019) Hydnocarpus Alpina Wt Extract Mediated Green Synthesis of ZnO Nanoparticle and Screening of Its Anti-Microbial, Free Radical Scavenging, and Photocatalytic Activity. Biocatalysis and Agricultural Biotechnology, 19, Article ID: 101129. https://doi.org/10.1016/j.bcab.2019.101129
 | 
                     
                                
                                    
                                        | [9] | Velsankar, K., Sudhahar, S., Maheshwaran, G. and Krishna Kumar, M. (2019) Effect of Biosynthesis of ZnO Nanoparticles via Cucurbita Seed Extract on Culex tritaeniorhynchus Mosquito Larvae with Its Biological Applications. Journal of Photochemistry and Photobiology B: Biology, 200, Article ID: 111650. https://doi.org/10.1016/j.jphotobiol.2019.111650
 | 
                     
                                
                                    
                                        | [10] | Wang, X.W., Li, Q.C., Zhou, C.X., Cao, Z.Q. and Zhang, R. (2019) ZnO Rod/Reduced Graphene Oxide Sensitized by α-Fe2O3 Nanoparticles for Effective Visible-Light Photoreduction of CO2. Journal of Colloid and Interface Science, 554, 335-343. https://doi.org/10.1016/j.jcis.2019.07.014
 | 
                     
                                
                                    
                                        | [11] | Ali, M., Amrane, N. and Tit, N. (2020) Relevance of Defects in ZnO Nanotubes for Selective Adsorption of H2S and CO2 Gas Molecules: Ab-Initio Investigation. Results in Physics, 16, Article ID: 102907. https://doi.org/10.1016/j.rinp.2019.102907
 | 
                     
                                
                                    
                                        | [12] | Chen, J.R., Jia, Y., Wang, W.Z., Fu, G.L., Shi, H.L. and Liang, Y.J. (2020) Morphology Selective Electrodeposition of Cu2O Microcrystals on ZnO Nanotube Arrays as Efficient Visible-Light-Driven Photo-Electrode. International Journal of Hydrogen Energy, 45, 8649-8658. https://doi.org/10.1016/j.ijhydene.2020.01.114
 | 
                     
                                
                                    
                                        | [13] | Mohamed, H.H., Hammami, I., Akhtar, S. and Youssef, T.E. (2019) Highly Efficient Cu-Phthalocyanine-Sensitized ZnO Hollow Spheres for Photocatalytic and Antimicrobial Applications. Composites Part B: Engineering, 176, Article ID: 107314. https://doi.org/10.1016/j.compositesb.2019.107314
 | 
                     
                                
                                    
                                        | [14] | Luo, J.H., Zhang, K., Cheng, M.L., Gu, M.M. and Sun, X.K. (2020) MoS2 Spheres Decorated on Hollow Porous ZnO Microspheres with Strong Wideband Microwave Ab-sorption. Chemical Engineering Journal, 380, Article ID: 122625. https://doi.org/10.1016/j.cej.2019.122625
 | 
                     
                                
                                    
                                        | [15] | Ballesteros-Balbuena, M., Roa-Morales, G., Vilchis-Nestor, A.R., Castrejón-Sánchez, V.H., Vigueras-Santiago, E., Balderas-Hernández, P., Barrera-Díaz, C., Camacho-López, S. and Camacho-López, M. (2020) Photocatalytic Urchin-Like and Needle-Like ZnO Nanostructures Synthetized by Thermal Oxidation. Materials Chemistry and Physics, 244, Article ID: 122703. https://doi.org/10.1016/j.matchemphys.2020.122703
 | 
                     
                                
                                    
                                        | [16] | Wang, H., Li, Q., Zheng, X.K., Wang, C., Ma, J.W., Yan, B.B., Du, Z.N., Li, M.Y., Wang, W.J. and Fan, H.Q. (2020) 3D Porous Flower-Like ZnO Microstructures Loaded by Large-Size Ag and Their Ultrahigh Sensitivity to Ethanol. Journal of Alloys and Compounds, 829, Article ID: 154453. https://doi.org/10.1016/j.jallcom.2020.154453
 | 
                     
                                
                                    
                                        | [17] | Zhang, Y.H., Li, Y.L., Gong, F.L., Xie, K.F., Liu, M., Zhang, H.L. and Fang, S.M. (2020) Al Doped Narcissus-Like ZnO for Enhanced NO2 Sensing Performance: An Experimental and DFT Investigation. Sensors and Actuators B: Chemical, 305, Article ID: 127489. https://doi.org/10.1016/j.snb.2019.127489
 | 
                     
                                
                                    
                                        | [18] | Chu, H.O., Wang, Q., Shi, Y.J., Song, S.G., Liu, W.G., Zhou, S., Gibson, D., Alajlani, Y. and Li, C. (2020) Structural, Optical Properties and Optical Modelling of Hydrothermal Chemical Growth Derived ZnO Nanowires. Transactions of Nonferrous Metals Society of China, 30, 191-199. https://doi.org/10.1016/S1003-6326(19)65191-5
 | 
                     
                                
                                    
                                        | [19] | Alam, S., Sahu, T.K., Gogoi, D., Peela, N.R. and Qureshi, M. (2020) Bio-Template Assisted Hierarchical ZnO Superstructures Coupled with Graphene Quantum Dots for En-hanced Water Oxidation Kinetics. Solar Energy, 199, 39-46. https://doi.org/10.1016/j.solener.2020.02.015
 | 
                     
                                
                                    
                                        | [20] | Puneetha, J., Nagaraju, K., Nagaraju, G. and Rathna, A. (2020) Visible Light Active ZnO Nanostructures Prepared by Simple Co-Precipitation Method. Photonics and Nanostruc-tures—Fundamentals and Applications, 39, Article ID: 100781. https://doi.org/10.1016/j.photonics.2020.100781
 | 
                     
                                
                                    
                                        | [21] | Alp, E., Araz, E.C., Buluç, A.F., Güner, Y., Değer, Y., Eşgin, H., Dermenci, K.B., Kürşat Kazmanlı, M., Turan, S. and Genç, A. (2018) Mesoporous Nanocrystalline ZnO Microspheres by Ethylene Glycol Mediated Thermal Decomposition. Advanced Powder Technology, 29, 3455-3461. https://doi.org/10.1016/j.apt.2018.09.028
 | 
                     
                                
                                    
                                        | [22] | Yang, P., Wang, J.C., Yue, G.Z., Yang, R.Z., Zhao, P.X., Yang, L.J., Zhao, X.C. and Astruc, D. (2020) Constructing Mesoporous g-C3N4/ZnO Nanosheets Catalyst for Enhanced Visi-ble-Light Driven Photocatalytic Activity. Journal of Photochemistry and Photobiology A: Chemistry, 388, Article ID: 112169. https://doi.org/10.1016/j.jphotochem.2019.112169
 | 
                     
                                
                                    
                                        | [23] | Zhou, D.F. and Qiu, C.Q. (2019) Study on the Effect of Co Doping Concentration on Optical Properties of g-C3N4. Chemical Physics Letters, 728, 70-73. https://doi.org/10.1016/j.cplett.2019.04.060
 | 
                     
                                
                                    
                                        | [24] | Tian, N., Huang, H.W., Wang, S.B., Zhang, T.R., Du, X. and Zhang, Y.H. (2020) Facet-Charge-Induced Coupling Dependent Interfacial Photocharge Separation: A Case of Bi-OI/g-C3N4 p-n Junction. Applied Catalysis B: Environmental, 267, Article ID: 118697. https://doi.org/10.1016/j.apcatb.2020.118697
 | 
                     
                                
                                    
                                        | [25] | Gao, Z.Q., Chen, K.Y., Wang, L., Bai, B., Liu, H. and Wang, Q.Z. (2019) Aminated Flower-Like ZnIn2S4 Coupled with Benzoic Acid Modified g-C3N4 Nanosheets via Covalent Bonds for Ameliorated Photocatalytic Hydrogen Generation. Applied Catalysis B: Environmental, 268, Article ID: 118462. https://doi.org/10.1016/j.apcatb.2019.118462
 | 
                     
                                
                                    
                                        | [26] | Xue, Z., Zhang, X.Y., Qin, J.Q. and Liu, R.P. (2020) Constructing MoS2/g-C3N4 Heterojunction with Enhanced Oxygen Evolution Reaction Activity: A Theoretical Insight. Applied Surface Science, 510, Article ID: 145489. https://doi.org/10.1016/j.apsusc.2020.145489
 | 
                     
                                
                                    
                                        | [27] | Zhao, S.S., Chen, S., Yu, H.T. and Quan, X. (2012) g-C3N4/TiO2 Hybrid Photocatalyst with Wide Absorption Wavelength Range and Effective Photogenerated Charge Separation. Separation and Purification Technology, 99, 50-54. https://doi.org/10.1016/j.seppur.2012.08.024
 | 
                     
                                
                                    
                                        | [28] | Wu, M., Yan, J.M., Zhang, X.W. and Zhao, M. (2015) Synthe-sis of g-C3N4 with Heating Acetic Acid Treated Melamine and Its Photocatalytic Activity for Hydrogen Evolution. Ap-plied Surface Science, 354, 196-200. https://doi.org/10.1016/j.apsusc.2015.01.132
 | 
                     
                                
                                    
                                        | [29] | Yang, Y.L., Mao, B.D., Gong, G., Li, D., Liu, Y.H., Cao, W.J., Xing, L., Zeng, J., Shi, W.D. and Yuan, S.Q. (2019) In-Situ Growth of Zn-AgIn5S8 Quantum Dots on g-C3N4 towards 0D/2D Heterostructured Photocatalysts with Enhanced Hydrogen Pro-duction. International Journal of Hydrogen Energy, 44, 15882-15891. https://doi.org/10.1016/j.ijhydene.2019.01.102
 | 
                     
                                
                                    
                                        | [30] | Ma, J., Tao, X.Y., Zhou, S.X., Song, X.Z., Guo, L., Wang, Y., Zhu, Y.B., Guo, L.T., Liu, Z.S., Fan, H.L. and Wei, X.Y. (2019) Facile Fabrication of Ag/PANI/g-C3N4 Composite with Enhanced Electrochemical Performance as Supercapacitor Electrode. Journal of Electroanalytical Chemistry, 835, 346-353. https://doi.org/10.1016/j.jelechem.2018.12.025
 | 
                     
                                
                                    
                                        | [31] | Xiao, Y.T., Tian, G.H., Li W., Xie, Y., Jiang, B.J., Tian, C.G., Zhao D.Y. and Fu, H.G. (2019) Molecule Self-Assembly Synthesis of Porous Few-Layer Carbon Nitride for Highly Efficient Photoredox Catalysis. Journal of the American Chemical Society, 141, 2508-2515. https://doi.org/10.1021/jacs.8b12428
 | 
                     
                                
                                    
                                        | [32] | Kang, J., Jin, C.Y., Li, Z.L., Wang, M., Chen, Z.Q. and Wang, Y.Z. (2020) Dual Z-Scheme MoS2/g-C3N4/Bi24O31Cl10 Ternary Heterojunction Photocatalysts for Enhanced Visible-Light Photodegradation of Antibiotic. Journal of Alloys and Compounds, 825, Article ID: 153975. https://doi.org/10.1016/j.jallcom.2020.153975
 | 
                     
                                
                                    
                                        | [33] | Wang, H.T., Bai, J.H., Dai, M., Liu, K.P., Liu, Y.Y., Zhou, L.S., Liu, F.M., Liu, F.M., Gao, Y., Yan, X. and Lu, G.Y. (2020) Visible Light Activated Excellent NO2 Sensing Based on 2D/2D ZnO/g-C3N4 Heterojunction Composites. Sensors and Actuators B: Chemical, 304, Article ID: 127287. https://doi.org/10.1016/j.snb.2019.127287
 | 
                     
                                
                                    
                                        | [34] | Zhai, J.L., Wang, T., Wang, C. and Liu, D.C. (2018) UV-Light-Assisted Ethanol Sensing Characteristics of g-C3N4/ZnO Composites at Room Temperature. Applied Surface Science, 441, 317-323. https://doi.org/10.1016/j.apsusc.2018.02.026
 | 
                     
                                
                                    
                                        | [35] | Naeem, F., Naeem, S., Zhao, Z., Shu, G.G., Zhang, J., Mei, Y.M. and Huang, G.S. (2020) Atomic Layer Deposition Synthesized ZnO Nanomembranes: A Facile Route towards Stable Supercapacitor Electrode for High Capacitance. Journal of Power Sources, 451, Article ID: 227740. https://doi.org/10.1016/j.jpowsour.2020.227740
 | 
                     
                                
                                    
                                        | [36] | Fahimi, Z. and Moradlou, O. (2020) Fabrication of ZnO@C Foam: A Flexible Free-Standing Electrode for Energy Storage De-vices. Materials & Design, 189, Article ID: 108525. https://doi.org/10.1016/j.matdes.2020.108525
 | 
                     
                                
                                    
                                        | [37] | Anandhi, P., Jawahar Senthil Kumar, V. and Harikrishnan, S. (2019) Preparation and Enhanced Capacitive Behavior of Ni-ZnO Nanocomposite as Electrode for Supercapacitor. Materials Today: Proceedings, 9, 361-370. https://doi.org/10.1016/j.matpr.2019.02.165
 | 
                     
                                
                                    
                                        | [38] | Alev, O., Sarıca, N., Özdemir, O., Arslan, L.C., Büyükköse, S. and Öztürk, Z.Z. (2020) Cu-Doped ZnO Nanorods Based QCM Sensor for Hazardous Gases. Journal of Alloys and Compounds, 826, Article ID: 154177. https://doi.org/10.1016/j.jallcom.2020.154177
 | 
                     
                                
                                    
                                        | [39] | Chao, J.F., Chen, Y.H., Xing, S.M., Zhang, D.L. and Shen, W.L. (2019) Facile Fabrication of ZnO/C Nanoporous Fibers and ZnO Hollow Spheres for High Performance Gas Sensor. Sensors and Actuators B: Chemical, 298, Article ID: 126927. https://doi.org/10.1016/j.snb.2019.126927
 | 
                     
                                
                                    
                                        | [40] | Serrà, A., Pip, P., Gómez, E. and Philippe, L. (2020) Efficient Magnetic Hybrid ZnO-Based Photocatalysts for Visible-Light-Driven Removal of Toxic Cyanobacteria Blooms and Cyanotoxins. Applied Catalysis B: Environmental, 268, Article ID: 118745. https://doi.org/10.1016/j.apcatb.2020.118745
 | 
                     
                                
                                    
                                        | [41] | Dhandapani, P., Prakash, A.A., AlSalhi, M.S., Maruthamuthu, S., Devanesan, S. and Rajasekar, A. (2020) Ureolytic Bacteria Mediated Synthesis of Hairy ZnO Nanostructure as Photocatalyst for Decolorization of Dyes. Materials Chemistry and Physics, 243, Article ID: 122619. https://doi.org/10.1016/j.matchemphys.2020.122619
 | 
                     
                                
                                    
                                        | [42] | Ganesh, M., Lee, S.G., Jayaprakash, J., Mohankumar, M. and Jang, H.T. (2019) Hydnocarpus Alpina Wt Extract Mediated Green Synthesis of ZnO Nanoparticle and Screening of Its Anti-Microbial, Free Radical Scavenging, and Photocatalytic Activity. Biocatalysis and Agricultural Biotechnology, 19, Article ID: 101129. https://doi.org/10.1016/j.bcab.2019.101129
 | 
                     
                                
                                    
                                        | [43] | Velsankar, K., Sudhahar, S., Maheshwaran, G. and Krishna Kumar, M. (2019) Effect of Biosynthesis of ZnO Nanoparticles via Cucurbita Seed Extract on Culex tritaeniorhynchus Mosquito Larvae with Its Biological Applications. Journal of Photochemistry and Photobiology B: Biology, 200, Article ID: 111650. https://doi.org/10.1016/j.jphotobiol.2019.111650
 | 
                     
                                
                                    
                                        | [44] | Wang, X.W., Li, Q.C., Zhou, C.X., Cao, Z.Q. and Zhang, R. (2019) ZnO Rod/Reduced Graphene Oxide Sensitized by α-Fe2O3 Nanoparticles for Effective Visible-Light Photoreduction of CO2. Journal of Colloid and Interface Science, 554, 335-343. https://doi.org/10.1016/j.jcis.2019.07.014
 | 
                     
                                
                                    
                                        | [45] | Ali, M., Amrane, N. and Tit, N. (2020) Relevance of Defects in ZnO Nanotubes for Selective Adsorption of H2S and CO2 Gas Molecules: Ab-Initio Investigation. Results in Physics, 16, Article ID: 102907. https://doi.org/10.1016/j.rinp.2019.102907
 | 
                     
                                
                                    
                                        | [46] | Chen, J.R., Jia, Y., Wang, W.Z., Fu, G.L., Shi, H.L. and Liang, Y.J. (2020) Morphology Selective Electrodeposition of Cu2O Microcrystals on ZnO Nanotube Arrays as Efficient Visible-Light-Driven Photo-Electrode. International Journal of Hydrogen Energy, 45, 8649-8658. https://doi.org/10.1016/j.ijhydene.2020.01.114
 | 
                     
                                
                                    
                                        | [47] | Mohamed, H.H., Hammami, I., Akhtar, S. and Youssef, T.E. (2019) Highly Efficient Cu-Phthalocyanine-Sensitized ZnO Hollow Spheres for Photocatalytic and Antimicrobial Applications. Composites Part B: Engineering, 176, Article ID: 107314. https://doi.org/10.1016/j.compositesb.2019.107314
 | 
                     
                                
                                    
                                        | [48] | Luo, J.H., Zhang, K., Cheng, M.L., Gu, M.M. and Sun, X.K. (2020) MoS2 Spheres Decorated on Hollow Porous ZnO Microspheres with Strong Wideband Microwave Ab-sorption. Chemical Engineering Journal, 380, Article ID: 122625. https://doi.org/10.1016/j.cej.2019.122625
 | 
                     
                                
                                    
                                        | [49] | Ballesteros-Balbuena, M., Roa-Morales, G., Vilchis-Nestor, A.R., Castrejón-Sánchez, V.H., Vigueras-Santiago, E., Balderas-Hernández, P., Barrera-Díaz, C., Camacho-López, S. and Camacho-López, M. (2020) Photocatalytic Urchin-Like and Needle-Like ZnO Nanostructures Synthetized by Thermal Oxidation. Materials Chemistry and Physics, 244, Article ID: 122703. https://doi.org/10.1016/j.matchemphys.2020.122703
 | 
                     
                                
                                    
                                        | [50] | Wang, H., Li, Q., Zheng, X.K., Wang, C., Ma, J.W., Yan, B.B., Du, Z.N., Li, M.Y., Wang, W.J. and Fan, H.Q. (2020) 3D Porous Flower-Like ZnO Microstructures Loaded by Large-Size Ag and Their Ultrahigh Sensitivity to Ethanol. Journal of Alloys and Compounds, 829, Article ID: 154453. https://doi.org/10.1016/j.jallcom.2020.154453
 | 
                     
                                
                                    
                                        | [51] | Zhang, Y.H., Li, Y.L., Gong, F.L., Xie, K.F., Liu, M., Zhang, H.L. and Fang, S.M. (2020) Al Doped Narcissus-Like ZnO for Enhanced NO2 Sensing Performance: An Experimental and DFT Investigation. Sensors and Actuators B: Chemical, 305, Article ID: 127489. https://doi.org/10.1016/j.snb.2019.127489
 | 
                     
                                
                                    
                                        | [52] | Chu, H.O., Wang, Q., Shi, Y.J., Song, S.G., Liu, W.G., Zhou, S., Gibson, D., Alajlani, Y. and Li, C. (2020) Structural, Optical Properties and Optical Modelling of Hydrothermal Chemical Growth Derived ZnO Nanowires. Transactions of Nonferrous Metals Society of China, 30, 191-199. https://doi.org/10.1016/S1003-6326(19)65191-5
 | 
                     
                                
                                    
                                        | [53] | Alam, S., Sahu, T.K., Gogoi, D., Peela, N.R. and Qureshi, M. (2020) Bio-Template Assisted Hierarchical ZnO Superstructures Coupled with Graphene Quantum Dots for En-hanced Water Oxidation Kinetics. Solar Energy, 199, 39-46. https://doi.org/10.1016/j.solener.2020.02.015
 | 
                     
                                
                                    
                                        | [54] | Puneetha, J., Nagaraju, K., Nagaraju, G. and Rathna, A. (2020) Visible Light Active ZnO Nanostructures Prepared by Simple Co-Precipitation Method. Photonics and Nanostruc-tures—Fundamentals and Applications, 39, Article ID: 100781. https://doi.org/10.1016/j.photonics.2020.100781
 | 
                     
                                
                                    
                                        | [55] | Alp, E., Araz, E.C., Buluç, A.F., Güner, Y., Değer, Y., Eşgin, H., Dermenci, K.B., Kürşat Kazmanlı, M., Turan, S. and Genç, A. (2018) Mesoporous Nanocrystalline ZnO Microspheres by Ethylene Glycol Mediated Thermal Decomposition. Advanced Powder Technology, 29, 3455-3461. https://doi.org/10.1016/j.apt.2018.09.028
 | 
                     
                                
                                    
                                        | [56] | Yang, P., Wang, J.C., Yue, G.Z., Yang, R.Z., Zhao, P.X., Yang, L.J., Zhao, X.C. and Astruc, D. (2020) Constructing Mesoporous g-C3N4/ZnO Nanosheets Catalyst for Enhanced Visi-ble-Light Driven Photocatalytic Activity. Journal of Photochemistry and Photobiology A: Chemistry, 388, Article ID: 112169. https://doi.org/10.1016/j.jphotochem.2019.112169
 | 
                     
                                
                                    
                                        | [57] | Zhou, D.F. and Qiu, C.Q. (2019) Study on the Effect of Co Doping Concentration on Optical Properties of g-C3N4. Chemical Physics Letters, 728, 70-73. https://doi.org/10.1016/j.cplett.2019.04.060
 | 
                     
                                
                                    
                                        | [58] | Tian, N., Huang, H.W., Wang, S.B., Zhang, T.R., Du, X. and Zhang, Y.H. (2020) Facet-Charge-Induced Coupling Dependent Interfacial Photocharge Separation: A Case of Bi-OI/g-C3N4 p-n Junction. Applied Catalysis B: Environmental, 267, Article ID: 118697. https://doi.org/10.1016/j.apcatb.2020.118697
 | 
                     
                                
                                    
                                        | [59] | Gao, Z.Q., Chen, K.Y., Wang, L., Bai, B., Liu, H. and Wang, Q.Z. (2019) Aminated Flower-Like ZnIn2S4 Coupled with Benzoic Acid Modified g-C3N4 Nanosheets via Covalent Bonds for Ameliorated Photocatalytic Hydrogen Generation. Applied Catalysis B: Environmental, 268, Article ID: 118462. https://doi.org/10.1016/j.apcatb.2019.118462
 | 
                     
                                
                                    
                                        | [60] | Xue, Z., Zhang, X.Y., Qin, J.Q. and Liu, R.P. (2020) Constructing MoS2/g-C3N4 Heterojunction with Enhanced Oxygen Evolution Reaction Activity: A Theoretical Insight. Applied Surface Science, 510, Article ID: 145489. https://doi.org/10.1016/j.apsusc.2020.145489
 | 
                     
                                
                                    
                                        | [61] | Zhao, S.S., Chen, S., Yu, H.T. and Quan, X. (2012) g-C3N4/TiO2 Hybrid Photocatalyst with Wide Absorption Wavelength Range and Effective Photogenerated Charge Separation. Separation and Purification Technology, 99, 50-54. https://doi.org/10.1016/j.seppur.2012.08.024
 | 
                     
                                
                                    
                                        | [62] | Wu, M., Yan, J.M., Zhang, X.W. and Zhao, M. (2015) Synthe-sis of g-C3N4 with Heating Acetic Acid Treated Melamine and Its Photocatalytic Activity for Hydrogen Evolution. Ap-plied Surface Science, 354, 196-200. https://doi.org/10.1016/j.apsusc.2015.01.132
 | 
                     
                                
                                    
                                        | [63] | Yang, Y.L., Mao, B.D., Gong, G., Li, D., Liu, Y.H., Cao, W.J., Xing, L., Zeng, J., Shi, W.D. and Yuan, S.Q. (2019) In-Situ Growth of Zn-AgIn5S8 Quantum Dots on g-C3N4 towards 0D/2D Heterostructured Photocatalysts with Enhanced Hydrogen Pro-duction. International Journal of Hydrogen Energy, 44, 15882-15891. https://doi.org/10.1016/j.ijhydene.2019.01.102
 | 
                     
                                
                                    
                                        | [64] | Ma, J., Tao, X.Y., Zhou, S.X., Song, X.Z., Guo, L., Wang, Y., Zhu, Y.B., Guo, L.T., Liu, Z.S., Fan, H.L. and Wei, X.Y. (2019) Facile Fabrication of Ag/PANI/g-C3N4 Composite with Enhanced Electrochemical Performance as Supercapacitor Electrode. Journal of Electroanalytical Chemistry, 835, 346-353. https://doi.org/10.1016/j.jelechem.2018.12.025
 | 
                     
                                
                                    
                                        | [65] | Xiao, Y.T., Tian, G.H., Li W., Xie, Y., Jiang, B.J., Tian, C.G., Zhao D.Y. and Fu, H.G. (2019) Molecule Self-Assembly Synthesis of Porous Few-Layer Carbon Nitride for Highly Efficient Photoredox Catalysis. Journal of the American Chemical Society, 141, 2508-2515. https://doi.org/10.1021/jacs.8b12428
 | 
                     
                                
                                    
                                        | [66] | Kang, J., Jin, C.Y., Li, Z.L., Wang, M., Chen, Z.Q. and Wang, Y.Z. (2020) Dual Z-Scheme MoS2/g-C3N4/Bi24O31Cl10 Ternary Heterojunction Photocatalysts for Enhanced Visible-Light Photodegradation of Antibiotic. Journal of Alloys and Compounds, 825, Article ID: 153975. https://doi.org/10.1016/j.jallcom.2020.153975
 | 
                     
                                
                                    
                                        | [67] | Wang, H.T., Bai, J.H., Dai, M., Liu, K.P., Liu, Y.Y., Zhou, L.S., Liu, F.M., Liu, F.M., Gao, Y., Yan, X. and Lu, G.Y. (2020) Visible Light Activated Excellent NO2 Sensing Based on 2D/2D ZnO/g-C3N4 Heterojunction Composites. Sensors and Actuators B: Chemical, 304, Article ID: 127287. https://doi.org/10.1016/j.snb.2019.127287
 | 
                     
                                
                                    
                                        | [68] | Zhai, J.L., Wang, T., Wang, C. and Liu, D.C. (2018) UV-Light-Assisted Ethanol Sensing Characteristics of g-C3N4/ZnO Composites at Room Temperature. Applied Surface Science, 441, 317-323. https://doi.org/10.1016/j.apsusc.2018.02.026
 |