[1]
|
Katsiki, N., Mikhailidis, D.P. and Banach, M. (2018) Leptin, Cardiovascular Diseases and Type 2 Diabetes Mellitus. Acta Pharmaceutica Sinica, 39, 1176-1188. https://doi.org/10.1038/aps.2018.40
|
[2]
|
Domouzoglou, E.M., Naka, K.K., Vlahos, A.P., et al. (2015) Fibroblast Growth Factors in Cardiovascular Disease: The Emerging Role of FGF21. Physiology-Heart and Circulatory Physiology, 309, 1029-1038.
https://doi.org/10.1152/ajpheart.00527.2015
|
[3]
|
Oike, Y., Yasunaga, K. and Suda, T. (2004) Angiopoiet-in-Related/Angiopoietin-Like Proteins Regulate Angiogenesis. International Journal of Hematology, 80, 21-28. https://doi.org/10.1532/IJH97.04034
|
[4]
|
Kenneth, C.E., Michelle, L. and Melanie, E. (2019) Tissue-Specific Epigenetics of Atherosclerosis-Related ANGPTL and ANGPTL Genes. Epigenomics, 11, 169-186. https://doi.org/10.2217/epi-2018-0150
|
[5]
|
Romeo, S., Yin, W., Kozlitina, J., et al. (2009) Rare Loss-of-Function Mutations in ANGPTL Family Members Contribute to Plasma Triglyceride Levels in Humans. Journal of Clinical In-vestigation, 119, 70-79.
https://doi.org/10.1172/JCI37118
|
[6]
|
Akhter, S., Rahman, M.M., Lee, H.S., Kim, H.J. and Hong, S.T. (2013) Angiopoietin-Like Proteins 1, 2, 3, 4, 6 and 7 in the Survival and Enhancement of ex Vivo Expansion of Bone-Marrow Hematopoietic Stem. Protein & Cell, 4, 220-250. https://doi.org/10.1007/s13238-013-2066-5
|
[7]
|
Namkung, J., Sohn, J.H., Chang, J.S., et al. (2019) Increased Serum Angiopoietin-Like6 ahead of Metabolic Syndrome in a Prospec-tive Cohort Study. Diabetes & Metabolism Journal, 43, 521-529. https://doi.org/10.4093/dmj.2018.0080
|
[8]
|
Oike, Y., Yasunaga, K., Ito, Y., et al. (2003) Angiopoietin-Related Growth Factor (AGF) Promotes Epidermal Proliferation, Remodeling, and Regeneration. Proceedings of the National Academy of Sciences of the United States of America, 100, 9494-9499. https://doi.org/10.1073/pnas.1531901100
|
[9]
|
Urano, T., Ito, Y., Akao, M., et al. (2008) Angiopoietin-Related Growth Factor Enhances Blood Flow Via Activation of the ERK1/2-eNOS-NO Pathway in a Mouse Hind-Limb Ischemia Model. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 827-834. https://doi.org/10.1161/ATVBAHA.107.149674
|
[10]
|
Bourcier, R., Scouarnec, S.L., Bonnaud, S., et al. (2018) Rare Coding Variants in ANGPTL6 Are Associated with Familial Forms of Intracranial Aneurysm. The American Journal of Human Genetics, 102, 133-141.
https://doi.org/10.1016/j.ajhg.2017.12.006
|
[11]
|
Nie H., Liang Y., Wang H. X., et al. (2017) Angiopoietin-Related Growth Factor Is Independently Associated with Lower Extremity Peripheral Arterial Disease. Journal of Diabetes and Its Complications, 31, 433-438.
https://doi.org/10.1016/j.jdiacomp.2016.10.019
|
[12]
|
Rampidis, G.P., Benetos, G., Benz, D.C., et al. (2019) A Guide for Gensini Score Calculation. Atherosclerosis, 287, 181-183. https://doi.org/10.1016/j.atherosclerosis.2019.05.012
|
[13]
|
Caland, L., Labbé, P., Mamarbachi, M., et al. (2019) Knockdown of Angiopoietin-Like 2 Induces Clearance of Vascular Endothelial Senescent Cells by Apoptosis, Promotes Endothelial Repair and Slows Atherogenesis in Mice. Aging, 11, 3832-3850. https://doi.org/10.18632/aging.102020
|
[14]
|
Lu, X. (2019) Structure and Function of Angiopoietin-Like Protein 3 (ANGPTL3) in Atherosclerosis. Current Medicinal Chemistry, 26, 1-15. https://doi.org/10.2174/0929867326666190621120523
|
[15]
|
Aryal, B., Price, N.L., Suarez, Y. and Fernán-dez-Hernando, C. (2019) NGPTL4 in Metabolic and Cardiovascular Disease. Trends in Molecular Medicine, 25, 723-734. https://doi.org/10.1016/j.molmed.2019.05.010
|
[16]
|
Abdullah, B., Deveci, K., Atilgan, R., Kiliçli, F. and Söylemez, M.S. (2012) Serum Angiopoietin-Related Growth Factor (AGF) Levels Are Elevated in Gestational Diabetes Mellitus and Associated with Insulin Resistance. Ginekologia Polska, 83, 749-753.
|
[17]
|
Tuuri, A.L., Jauhiainen, M.S., Ehnholm, C.P., et al. (2013) Elevated Serum Angiopoietin-Like Protein 6 in Women with Subsequent Pregnan-cy-Induced Hypertension: A Preliminary Study. Hypertension in Pregnancy, 32, 203-213.
https://doi.org/10.3109/10641955.2013.784783
|
[18]
|
Cui, J.G., Zhao, Y., Sethi, P., et al. (2010) Micro-RNA-128 (miRNA-128) Down-Regulation in Glioblastoma Targets ARP5 (ANGPTL6), Bmi-1 and E2F-3a, Key Regulators of Brain Cell Proliferation. Journal of Neuro-Oncology, 98, 297-304. https://doi.org/10.1007/s11060-009-0077-0
|
[19]
|
Li, J.L., Yang, Z., Wu, S. and Kong, J. (2012) Relationship be-tween Endothelial Nitric Oxide Synthase, Insulin Resistance and Macrovascular Disease in Patients with Acute Myo-cardial Infarction. Journal of International Medical Research, 40, 687-693. https://doi.org/10.1177/147323001204000232
|
[20]
|
Weiming, X.U., Charles, I.G., Moncada, S., et al. (2005) Nitric Oxide: Orchestrating Hypoxia Regulation through Mitochondrial Respiration and the Endoplasmic Reticulum Stress Response. Cell Research, 15, 63-65.
https://doi.org/10.1038/sj.cr.7290267
|
[21]
|
Willoughby, S.R., Stewart, S., Chirkov, Y.Y., Kennedy, J.A., Holmes, A.S., Horowitz, J.D., et al. (2002) Beneficial Clinical Effects of Perhexiline in Patients with Stable Angina Pectoris and Acute Coronary Syndromes Are Associated with Potentiation of Platelet Responsiveness to Nitric Oxide. European Heart Journal, 23, 1946-1954.
https://doi.org/10.1053/euhj.2002.3296
|
[22]
|
Weiming, X.U., Charles, I.G., Moncada, S., et al. (2005) Nitric Oxide: Orchestrating Hypoxia Regulation through Mitochondrial Respiration and the Endoplasmic Reticulum Stress Response. Cell Research, 15, 63-65.
https://doi.org/10.1038/sj.cr.7290267
|
[23]
|
Yin J., Liu H., Huan L., et al. (2017) Role of miR-128 in Hyperten-sion-Induced Myocardial Injury Role of miR-128 in Hypertension-Induced Myocardial Injury. Experimental and Therapeutic Medicine, 14, 2751-2756.
https://doi.org/10.3892/etm.2017.4886
|
[24]
|
Huang, W., Feng, Y., Liang, J., et al. (2018) Loss of microRNA-128 Promotes Cardiomyocyte Proliferation and Heart Regeneration. Nature Communications, 9, 700. https://doi.org/10.1038/s41467-018-03019-z
|
[25]
|
Zeng, X.C., Li, L., Wen, H. and Bi, Q. (2016) MicroRNA-128 Inhibition Attenuates Myocardial Ischemia /Reperfusion Injury-Induced Cardiomyocyte Apoptosis by the Targeted Activation of Peroxisome Proliferator-Activated Receptor Gamma. Molecular Medicine Reports, 14, 129-136. https://doi.org/10.3892/mmr.2016.5208
|
[26]
|
Kang, S.G., Yi, H.S., Choi, M.J., et al. (2017) ANGPTL6 Expression Is Coupled with Mitochondrial OXPHOS Function to Regulate Adipose FGF21. Journal of Endocrinology, 233, 105-118. https://doi.org/10.1530/JOE-16-0549
|