|
[1]
|
Sultan, F., Kaur, R., Mir, A.H., et al. (2020) Rosuvastatin and Retinoic Acid May Act as “Pleiotropic Agents” against β-Adrenergic Agonist-Induced Acute Myocardial Injury through Modulation of Multiple Signalling Pathways. Chemico-Biological Interactions, 318, Article ID: 108970. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Dent, S.F., Suter, T.M., Lopez-Fernández, T., Opolski, G., Menna, P. and Minotti, G. (2019) Cardio-Oncology in Clinical Studies and Real Life. Seminars in Oncology, 46, 421-425. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Deidda, M., Mercurio, V., Cuomo, A., et al. (2019) Metabolomic Perspectives in Antiblastic Cardiotoxicity and Cardioprotection. International Journal of Molecular Sciences, 20, 4928. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Kerner, J., Huang, H., Vazquez, E., Reszko, A., Martini, W.Z., Hoppel, C.L., Imai, M., Rastogi, S., Sabbah, H.N., et al. (2004) Moderate Severity Heart Failure Does Not Involve a Down-Regulation of Myocardial Fatty Acid Oxidation. American Journal of Physiology: Heart and Circulatory Physiology, 287, H1538-H1543. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Nascimben, L., Ingwall, J.S., Lorell, B.H., et al. (2004) Mechanisms for Increased Glycolysis in the Hypertrophied Rat Heart. Hypertension, 44, 662-667. [Google Scholar] [CrossRef]
|
|
[6]
|
Fillmore, N. and Lopaschuk, G.D. (2013) Targeting Mitochondrial Oxidative Metabolism as an Approach to Treat Heart Failure. Biochimica et Biophysica Acta Molecular Cell Research, 1833, 857-865. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Akhmedov, A.T., Rybin, V. and Marín-García, J. (2015) Mitochondrial Oxidative Metabolism and Uncoupling Proteins in the Failing Heart. Heart Failure Reviews, 20, 227-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Schwartz, A.M., Westerman, S. and Mandawat, A. (2020) Cardiac Resynchronization Therapy for Chemotherapy-Induced Cardiomyopathy. JAMA, 323, 1316. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Barish, R., Gates, E. and Barac, A. (2019) Trastuzumab-Induced Cardiomyopathy. Cardiology Clinics, 37, 407-418. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Kang, Y. and Scherrer-Crosbie, M. (2019) Echocardiography Imaging of Cardiotoxicity. Cardiology Clinics, 37, 419-427. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Lustberg, M.B., Reinbolt, R., Addison, D., et al. (2019) Early Detection of Anthracycline-Induced Cardiotoxicity in Breast Cancer Survivors with T2 Cardiac Magnetic Resonance. Circulation: Cardiovascular Imaging, 12, e008777. [Google Scholar] [CrossRef]
|
|
[12]
|
Gulati, G., Heck, S.L., et al. (2017) Neurohormonal Blockade and Circulating Cardiovascular Biomarkers during Anthracycline Therapy in Breast Cancer Patients: Results from the PRADA (Prevention of Cardiac Dysfunction during Adjuvant Breast Cancer Therapy) Study. Journal of the American Heart Association, 6, e006513. [Google Scholar] [CrossRef]
|
|
[13]
|
Pokharel, P., Fujikura, K. and Bella, J.N. (2015) Clinical Applications and Prognostic Implications of Strain and Strain Rate Imaging. Expert Review of Cardiovascular Therapy, 13, 853-866. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Cardinale, D.M., Barac, A., Torbicki, A., Khandheria, B.K., Lenihan, D. and Minotti, G. (2019) Cardio-Oncological Management of Patients. Seminars in Oncology, 46, 408-413. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Liang, S., Brundage, R.C., Jacobson, P.A., et al. (2016) Pharmacokinetic-Pharmacodynamic Modeling of Acute N-Terminal Pro B-Type Natriuretic Peptide after Doxorubicin Infusion in Breast Cancer. British Journal of Clinical Pharmacology, 82, 773-783. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Zhang, H., Tian, Y.K., Liang, D.G., Fu, Q., Jia, L.Q., Wu, D.W. and Zhu, X.Y. (2020) The Effects of Inhibition of MicroRNA-375 in a Mouse Model of Doxorubicin-Induced Cardiac Toxicity. Medical Science Monitor, 26, e920557. [Google Scholar] [CrossRef]
|
|
[17]
|
Kaboré, E.G., Guenancia, C., Vaz-Luis, I., et al. (2019) Association of Body Mass Index and Cardiotoxicity Related to Anthracyclines and Trastuzumab in Early Breast Cancer: French CANTO Cohort Study. PLoS Medicine, 16, e1002989. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Shao, L., Cai, X., Zhu, H., et al. (2018) TLR2 and TLR3 Expression as a Biomarker for the Risk of Doxorubicin-Induced Heart Failure. Toxicology Letters, S0378427418314693.
|
|
[19]
|
He, S.F., Jin, S.Y., Yang, W., et al. (2018) Cardiac μ-Receptor Contributes to Opioid-Induced Cardioprotection in Chronic Heart Failure. British Journal of Anaesthesia, S0007091217542312. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Geeta, G., Lagethon, H.S., Hansen, R.A., et al. (2016) Prevention of Cardiac Dysfunction during Adjuvant Breast Cancer Therapy (PRADA): A 2 × 2 Factorial, Randomized, Placebo-Controlled, Double-Blind Clinical Trial of Candesartan and Metoprolol. European Heart Journal, 37, 1671-1680.
|
|
[21]
|
Vineeta, G., Sunil, K.S., Vikas, A., et al. (2018) Role of ACE Inhibitors in Anthracycline-Induced Cardiotoxicity: A Randomized, Double-Blind, Placebo-Controlled Trial. Pediatric Blood & Cancer, 65, e27308. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Boekhout, A.H., Gietema, J.A., Kerklaan, B.M., et al. (2016) Angiotensin II-Receptor Inhibition with Candesartan to Prevent Trastuzumab-Related Cardiotoxic Effects in Patients with Early Breast Cancer: A Randomized Clinical Trial. JAMA Oncology, 2, 1030-1037.
|
|
[23]
|
Cardinale, D., Colombo, A., Lamantia, G., Colombo, N., Civelli, M., De Giacomi, G., Rubino, M., Veglia, F., Fiorentini, C. and Cipolla, C.M. (2010) Anthracycline-Induced Cardiomyopathy. Journal of the American College of Cardiology, 55, 213-220. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Cadeddu, C., Mercurio, V., Spallarossa, P., Nodari, S., Triggiani, M., Monte, I., Piras, R., Madonna, R., Pagliaro, P., Tocchetti, C.G. and Mercuro, G. (2016) Preventing Antiblastic Drug-Related Cardiomyopathy: Old and New Therapeutic Strategies. Journal of Cardiovascular Medicine, 17, S64-S75. [Google Scholar] [CrossRef]
|
|
[25]
|
Eth, Y., Ewer, M.S., Moslehi, J., et al. (2019) Mechanisms and Clinical Course of Cardiovascular Toxicity of Cancer Treatment I. Oncology. Seminars in Oncology, 46, 397-402. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Najafi, M., Shayesteh, M.R.H., Mortezaee, K., Farhood, B. and Haghi-Aminjan, H. (2020) The Role of Melatonin on Doxorubicin-Induced Cardiotoxicity: A Systematic Review. Life Sciences, 241, Article ID: 117173. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zhang, S., You, Z.-Q., Yang, L., Li, L.-L., Wu, Y.-P., Gu, L.-Q. and Xin, Y.-F. (2019) Protective Effect of Shenmai Injection on Doxorubicin-Induced Cardiotoxicity via Regulation of Inflammatory Mediators. BMC Complementary and Alternative Medicine, 19, Article No. 317. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Topal, I., et al. (2018) The Effect of Rutin on Cisplatin-Induced Oxidative Cardiac Damage in Rats. The Anatolian Journal of Cardiology, 20, 136-142. [Google Scholar] [CrossRef]
|
|
[29]
|
Wen, J., Zou, W., Wang, R., et al. (2019) Cardioprotective Effects of Aconiti Lateralis Radix Praeparata Combined with Zingiberis Rhizoma on Doxorubicin-Induced Chronic Heart Failure in Rats and Potential Mechanisms. Journal of Ethnopharmacology, 238, Article ID: 111880. [Google Scholar] [CrossRef] [PubMed]
|