|
[1]
|
Denic, A., Glassock, R.J. and Rule, A.D. (2016) Structural and Functional Changes with the Aging Kidney. Advances in Chronic Kidney Disease, 23, 19-28. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Hommos, M.S., Glassock, R.J. and Rule, A.D. (2017) Structural and Functional Changes in Human Kidneys with Healthy Aging. Journal of the American Society of Nephrology, 28, 2838-2844. [Google Scholar] [CrossRef]
|
|
[3]
|
Karam, Z. and Tuazon, J. (2013) Anatomic and Physiologic Changes of the Aging Kidney. Clinics in Geriatric Medicine, 29, 555-564. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Kitada, M., Kume, S., Takeda-Watanabe, A., et al. (2013) Sirtuins and Renal Diseases: Relationship with Aging and Diabetic Nephropathy. Clinical Science (London), 124, 153-164. [Google Scholar] [CrossRef]
|
|
[5]
|
Morigi, M., Perico, L. and Benigni, A. (2018) Sirtuins in Renal Health and Disease. Journal of the American Society of Nephrology, 29, 1799-1809. [Google Scholar] [CrossRef]
|
|
[6]
|
Guarente, L. (2000) Sir2 Links Chromatin Silencing, Metabolism, and Aging. Genes & Development, 14, 1021-1026.
|
|
[7]
|
Houtkooper, R.H., Pirinen, E. and Auwerx, J. (2012) Sirtuins as Regulators of Metabolism and Healthspan. Nature Reviews Molecular Cell Biology, 13, 225-238. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Roy, S., Saha, S., Gupta, P., et al. (2019) Crosstalk of PD-1 Signaling with SIRT1/FOXO-1 Axis in Progression of Visceral Leishmaniasis. Journal of Cell Science, 132. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Yeung, F., Hoberg, J.E., Ramsey, C.S., et al. (2004) Modulation of NF-kappaB-Dependent Transcription and Cell Survival by the SIRT1 Deacetylase. EMBO Journal, 23, 2369-2380. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Ong, A. and Ramasamy, T.S. (2018) Role of Sirtuin1-p53 Regulatory Axis in Aging, Cancer and Cellular Reprogramming. Ageing Research Reviews, 43, 64-80. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Radak, Z., Koltai, E., Taylor, A.W., et al. (2013) Redox-Regulating Sirtuins in Aging, Caloric Restriction, and Exercise. Free Radical Biology and Medicine, 58, 87-97. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Luo, Y., Lu, S., Ai, Q., et al. (2019) SIRT1/AMPK and Akt/eNOS Signaling Pathways Are Involved in Endothelial Protection of Total Aralosides of Aralia elata (Miq) Seem against High-Fat Diet-Induced Atherosclerosis in ApoE-/- Mice. Phytotherapy Research, 33, 768-778. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Bu, X., Wu, Lu, X., et al. (2017) Role of SIRT1/PGC-1alpha in Mitochondrial Oxidative Stress in Autistic Spectrum Disorder. Neuropsychiatric Disease and Treatment, 13, 1633-1645. [Google Scholar] [CrossRef]
|
|
[14]
|
He, W., Wang, Y., Zhang, M.Z., et al. (2010) Sirt1 Activation Protects the Mouse Renal Medulla from Oxidative Injury. Journal of Clinical Investigation, 120, 1056-1068. [Google Scholar] [CrossRef]
|
|
[15]
|
Linkermann, A., Chen, G., Dong, G., et al. (2014) Regulated Cell Death in AKI. Journal of the American Society of Nephrology, 25, 2689-2701. [Google Scholar] [CrossRef]
|
|
[16]
|
Kim, H.S., Patel, K., Muldoon-Jacobs, K., et al. (2010) SIRT3 Is a Mitochondria-Localized Tumor Suppressor Required for Maintenance of Mitochondrial Integrity and Metabolism during Stress. Cancer Cell, 17, 41-52. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Sundaresan, N.R., Bindu, S., Pillai, V.B., et al. (2015) SIRT3 Blocks Aging-Associated Tissue Fibrosis in Mice by Deacetylating and Activating Glycogen Synthase Kinase 3beta. Molecular and Cellular Biology, 36, 678-692. [Google Scholar] [CrossRef]
|
|
[18]
|
Jing, E., Emanuelli, B., Hirschey, M.D., et al. (2011) Sirtuin-3 (Sirt3) Regulates Skeletal Muscle Metabolism and Insulin Signaling via Altered Mitochondrial Oxidation and Reactive Oxygen Species Production. Proceedings of the National Academy of Sciences of the United States of America, 108, 14608-14613. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Huang, W., Liu, H., Zhu, S., et al. (2017) Sirt6 Deficiency Results in Progression of Glomerular Injury in the Kidney. Aging, 9, 1069-1083. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Liu, M., Liang, K., Zhen, J., et al. (2017) Sirt6 Deficiency Exacerbates Podocyte Injury and Proteinuria through Targeting Notch Signaling. Nature Communications, 8, Article No.: 413. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Watroba, M. and Szukiewicz, D. (2016) The Role of Sirtuins in Aging and Age-Related Diseases. Advances in Medical Sciences, 61, 52-62. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Tanner, K.G., Landry, J., Sternglanz, R., et al. (2000) Silent Information Regulator 2 Family of NAD-Dependent Histone/Protein Deacetylases Generates a Unique Product, 1-O-Acetyl-ADP-Ribose. Proceedings of the National Academy of Sciences of the United States of America, 97, 14178-14182. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Kim, E.J., Kho, J.H., Kang, M.R., et al. (2007) Active Regulator of SIRT1 Cooperates with SIRT1 and Facilitates Suppression of p53 Activity. Molecular Cell, 28, 277-290. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zhao, W., Kruse, J.P., Tang, Y., et al. (2008) Negative Regulation of the Deacetylase SIRT1 by DBC1. Nature, 451, 587-590. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Yang, H.C. and Fogo, A.B. (2014) Fibrosis and Renal Aging. Kidney International Supplements, 4, 75-78. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Stefanska, A., Eng, D., Kaverina, N., et al. (2015) Interstitial Pericytes Decrease in Aged Mouse Kidneys. Aging, 7, 370-382. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
顾铜, 李均. 肾小管上皮细胞凋亡与肾纤维化及中药组分的干预进展[J]. 中国老年学杂志, 2014, 34(17): 5011-5014.
|
|
[28]
|
杜春阳, 王珊, 姜珊珊, 等. Sirt1活化剂对肾间质纤维化的保护作用及机制研究[J]. 中国细胞生物学学报, 2015, 37(8): 1115-1121.
|
|
[29]
|
Meng, X.M., Nikolic-Paterson, D.J. and Lan, H.Y. (2016) TGF-Beta: The Master Regulator of Fibrosis. Nature Reviews Nephrology, 12, 325-338. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
梁瑾. 白藜芦醇对肾脏纤维化的保护作用及相关机制研究[D]: [硕士学位论文]. 苏州: 苏州大学, 2015.
|
|
[31]
|
王心, 陈铖. 沉默信息调节因子1对肾间质保护作用的研究进展[J]. 东南国防医药, 2018, 20(2): 177-180.
|
|
[32]
|
Kim, E.N., Lim, J.H., Kim, M.Y., et al. (2016) PPARα Agonist, Fenofibrate, Ameliorates Age-Related Renal Injury. Experimental Gerontology, 81, 42-50. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Brunet, A., Sweeney, L.B., Sturgill, J.F., et al. (2004) Stress-Dependent Regulation of FOXO Transcription Factors by the SIRT1 Deacetylase. Science, 303, 2011-2015. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Hasegawa, K., Wakino, S., Yoshioka, K., et al. (2008) Sirt1 Protects against Oxidative Stress-Induced Renal Tubular Cell Apoptosis by the Bidirectional Regulation of Catalase Expression. Biochemical and Biophysical Research Communications, 372, 51-56. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Yamamoto, T., Takabatake, Y., Kimura, T., et al. (2016) Time-Dependent Dysregulation of Autophagy: Implications in Aging and Mitochondrial Homeostasis in the Kidney Proximal Tubule. Autophagy, 12, 801-813. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Hartleben, B., Godel, M., Meyer-Schwesinger, C., et al. (2010) Autophagy Influences Glomerular Disease Susceptibility and Maintains Podocyte Homeostasis in Aging Mice. Journal of Clinical Investigation, 120, 1084-1096. [Google Scholar] [CrossRef]
|
|
[37]
|
De Rechter, S., Decuypere, J.P., Ivanova, E., et al. (2016) Autophagy in Renal Diseases. Pediatric Nephrology, 31, 737-752. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Schmitt, R. and Melk, A. (2017) Molecular Mechanisms of Renal Aging. Kidney International, 92, 569-579. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Ning, Y.C., Cai, G.Y., Zhuo, L., et al. (2013) Short-Term Calorie Restriction Protects against Renal Senescence of Aged Rats by Increasing Autophagic Activity and Reducing Oxidative Damage. Mechanisms of Ageing and Development, 134, 570-579. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Lin, T.A., Wu, V.C. and Wang, C.Y. (2019) Autophagy in Chronic Kidney Diseases. Cells, 8, 61. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Kume, S., Uzu, T., Horiike, K., et al. (2010) Calorie Restriction Enhances Cell Adaptation to Hypoxia through Sirt1-Dependent Mitochondrial Autophagy in Mouse Aged Kidney. Journal of Clinical Investigation, 120, 1043-1055. [Google Scholar] [CrossRef]
|
|
[42]
|
Kimura, T., Isaka, Y. and Yoshimori, T. (2017) Autophagy and Kidney Inflammation. Autophagy, 13, 997-1003. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Di Maggio, F.M., Minafra, L., Forte, G.I., et al. (2015) Portrait of Inflammatory Response to Ionizing Radiation Treatment. Journal of Inflammation, 12, Article No.: 14. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Lee, S.H., Lee, J.H., Lee, H.Y., et al. (2019) Sirtuin Signaling in Cellular Senescence and Aging. BMB Reports, 52, 24-34. [Google Scholar] [CrossRef]
|
|
[45]
|
Lopez-Lluch, G. and Navas, P. (2016) Calorie Restriction as an Intervention in Ageing. Journal of Physiology, 594, 2043-2060. [Google Scholar] [CrossRef]
|
|
[46]
|
Zhang, N., Li, Z., Mu, W., et al. (2016) Calorie Restriction-Induced SIRT6 Activation Delays Aging by Suppressing NF-kappaB Signaling. Cell Cycle, 15, 1009-1018. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
胡良煜, 王红伟, 张嘉慧, 等. 姜黄素对多器官损伤保护作用的研究进展[J]. 医学综述, 2018, 24(20): 4097-4102.
|
|
[48]
|
Liao, V.H., Yu, C.W., Chu, Y.J., et al. (2011) Curcumin-Mediated Lifespan Extension in Caenorhabditis elegans. Mechanisms of Ageing and Development, 132, 480-487. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Lee, K.S., Lee, B.S., Semnani, S., et al. (2010) Curcumin Extends Life Span, Improves Health Span, and Modulates the Expression of Age-Associated Aging Genes in Drosophila Melanogaster. Rejuvenation Research, 13, 561-570. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Grabowska, W., Suszek, M., Wnuk, M., et al. (2016) Curcumin Elevates Sirtuin Level but Does Not Postpone in Vitro Senescence of Human Cells Building the Vasculature. Oncotarget, 7, 19201-19213. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Erkasap, S., Erkasap, N., Bradford, B., et al. (2017) The Effect of Leptin and Resveratrol on JAK/STAT Pathways and Sirt-1 Gene Expression in the Renal Tissue of Ischemia/Reperfusion Induced Rats. Bratislava Medical Journal, 118, 443-448. [Google Scholar] [CrossRef]
|