[1]
|
原佳琪, 梁爽, 孙雅煊, 等. 壳寡糖的制备及生物学活性研究进展[J]. 生命的化学, 2019, 39(4): 759-765.
|
[2]
|
Apolinar-Valiente, R., Romero-Cascales, I., Williams, P., et al. (2015) Oligosaccharides of Cabernet Sauvignon, Syrah and Monastrell Red Wines. Food Chemistry, 179, 311-317. https://doi.org/10.1016/j.foodchem.2015.01.139
|
[3]
|
Liang, L., Liu, G., Yu, G., et al. (2019) Simultaneous Decol-oration and Purification of Crude Oligosaccharides from Pumpkin (Cucurbita moschata Duch) by Macroporous Adsor-bent Resin. Food Chemistry, 277, 744-752.
https://doi.org/10.1016/j.foodchem.2018.10.138
|
[4]
|
Zhang, W., You, Y., Lei, F., et al. (2018) Acetyl-Assisted Autohydrolysis of Sugarcane Bagasse for the Production of Xylo-Oligosaccharides without Additional Chemicals. Bio-resource Technology, 265, 387-393.
https://doi.org/10.1016/j.biortech.2018.06.039
|
[5]
|
Pitt, J., Chan, M., Gibson, C., et al. (2019) Safety Assessment of the Biotechnologically Produced Human-Identical Milk Oligosaccharide 3-Fucosyllactose (3-FL). Food and Chemical Toxicology, 134, 110-818.
https://doi.org/10.1016/j.fct.2019.110818
|
[6]
|
Thurl, S., Munzert, M., Boehm, G., et al. (2017) Systematic Review of the Concentrations of Oligosaccharides in Human Milk. Nutrition Reviews, 75, 920-933. https://doi.org/10.1093/nutrit/nux044
|
[7]
|
Dalal, D.S., Patil, D.R. and Tayade, Y.A. (2018) β-Cyclodextrin: A Green and Efficient Supramolecular Catalyst for Organic Transformations. Chemical Record, 18, 1560-1582. https://doi.org/10.1002/tcr.201800016
|
[8]
|
王敏, 帅天罡, 秦清娟, 等. 魔芋葡甘低聚糖对大鼠肠道环境的影响[J]. 食品科学, 2016, 37(7): 197-203.
|
[9]
|
刘丽媛. 芦笋低聚糖润肠通便功能的研究[J]. 食品研究与开发, 2017, 38(4): 165-167.
|
[10]
|
谷雪玲, 陈将, 李浩, 等. 功能性寡糖调控母猪胰岛素抵抗及其作用机制的研究进展[J]. 动物营养学报, 2019, 31(12): 5422-5430.
|
[11]
|
Pan, L., Farouk, M.H., Qin, G., et al. (2018) The Influences of Soybean Agglutinin and Functional Oligosaccharides on the Intestinal Tract of Monogastric Animals. International Journal of Molecular Sciences, 19, 554.
https://doi.org/10.3390/ijms19020554
|
[12]
|
Bering, S.B. (2018) Human Milk Oligosaccharides to Prevent Gut Dysfunction and Necrotizing Enterocolitis in Preterm Neonates. Nutrients, 10, 1461. https://doi.org/10.3390/nu10101461
|
[13]
|
Ose, R., Hirano, K., Maeno, S., et al. (2018) The Ability of Human Intes-tinal Anaerobes to Metabolize Different Oligosaccharides: Novel Means for Microbiota Modulation. Anaerobe, 51, 110-119.
https://doi.org/10.1016/j.anaerobe.2018.04.018
|
[14]
|
党国旗, 杨新宇, 许晴, 等. 壳寡糖对断奶仔猪免疫力及相关理化指标的影响[J]. 动物营养学报, 2017, 29(11): 3980-3986.
|
[15]
|
Donovan, S.M. and Comstock, S.S. (2016) Human Milk Oligosaccharides Influence Neonatal Mucosal and Systemic Immunity. Annals of Nutrition and Metabolism, 69, 42-51. https://doi.org/10.1159/000452818
|
[16]
|
Kulinich, A. and Liu, L. (2016) Human Milk Oligosaccharides: The Role in the Fine-Tuning of Innate Immune Responses. Carbohydrate Research, 432, 62-70. https://doi.org/10.1016/j.carres.2016.07.009
|
[17]
|
Plaza-Diaz, J., Fontana, L. and Gil, A. (2018) Human Milk Oli-gosaccharides and Immune System Development. Nutrients, 10, 1038. https://doi.org/10.3390/nu10081038
|
[18]
|
Mao, X., Wang, J.W., Hang, Y.X., et al. (2019) A Human Milk Oligo-saccharide, 2-Fucosyllactose, Enhances the Immunity in Mice Fed an Infant Formula Milk Diet. International Dairy Journal, 98, 38-43.
https://doi.org/10.1016/j.idairyj.2019.07.001
|
[19]
|
Tonon, K.M., et al. (2019) Validation and Application of a Method for the Simultaneous Absolute Quantification of 16 Neutral and Acidic Human Milk Oligosaccharides by Graph-itized Carbon Liquid Chromatography—Electrospray Ionization—Mass Spectrometry. Food Chemistry, 274, 691-697. https://doi.org/10.1016/j.foodchem.2018.09.036
|
[20]
|
Zhai, X.C., Yuan, S.J., Yang, X., et al. (2019) Chitosan Oli-gosaccharides Induce Apoptosis in Human Renal Carcinoma via ROS-Dependent ER Stress. Journal of Agricultural and Food Chemistry, 67, 1691-1701.
https://doi.org/10.1021/acs.jafc.8b06941
|
[21]
|
Jiang, Z., Li, H., Qiao, J., et al. (2019) Potential Analysis and Prepa-ration of Chitosan Oligosaccharides as Oral Nutritional Supplements of Cancer Adjuvant Therapy. International Journal of Molecular Sciences, 20, 920.
https://doi.org/10.3390/ijms20040920
|
[22]
|
官杰, 王慧, 罗晓庆, 等. 壳寡糖抗肿瘤作用的实验研究[J]. 齐齐哈尔医学院学报, 2014, 35(7): 937-938.
|
[23]
|
Yao, Z., Wu, H., Zhang, S., et al. (2014) Enzymatic Preparation of κ-Carrageenan Oligosaccharides and Their Anti-Angiogenic Activity. Carbohydrate Polymers, 101, 359-367. https://doi.org/10.1016/j.carbpol.2013.09.055
|
[24]
|
Groult, H., Cousin, R., Chot-Plassot, C., et al. (2019) λ-Carrageenan Oligosaccharides of Distinct Anti-Heparanase and Anticoagulant Activities Inhibit MDA-MB-231 Breast Cancer Cell Migration. Marine Drugs, 17, 140.
https://doi.org/10.3390/md17030140
|
[25]
|
Chen, D., Dong, X., Qi, M., et al. (2017) Dual pHredox Responsive and CD44 Receptor Targeting Hybrid Nano-Chrysalis Based on New Oligosaccharides of Hyaluronan Conjugates. Carbo-hydrate Polymers, 157, 1272-1280.
https://doi.org/10.1016/j.carbpol.2016.10.089
|
[26]
|
Cheong, K.L., Qiu, H.M., Du, H., et al. (2018) Oligosaccha-rides Derived from Red Seaweed: Production, Properties, and Potential Health and Cosmetic Applications. Molecules, 23, 2451. https://doi.org/10.3390/molecules23102451
|
[27]
|
郝桂娟, 张宾, 章样扬, 等. 壳寡糖锌配合物对氧化衰老模型小鼠的抗氧化作用[J]. 核农学报, 2019, 33(6): 1156-1164.
|
[28]
|
Wu, S. and Huang, X. (2017) Preparation and Antioxidant Activities of Oligosaccharides from Crassostrea gigas. Food Chemistry, 216, 243-246. https://doi.org/10.1016/j.foodchem.2016.08.043
|
[29]
|
Hou, Y., Ding, X. and Hou, W. (2015) Composition and An-tioxidant Activity of Water-Soluble Oligosaccharides from Hericium erinaceus. Molecular Medicine Reports, 11, 3794-3799. https://doi.org/10.3892/mmr.2014.3121
|
[30]
|
Chen, Y.F., Zhu, Q. and Wu, S. (2015) Preparation of Oligosaccharides from Chinese Yam and Their Antioxidant Activity. Food Chemistry, 173, 1107-1110. https://doi.org/10.1016/j.foodchem.2014.10.153
|
[31]
|
Xia, Z. (2015) Preparation of the Oligosaccharides Derived from Flammulina velutipes and Their Antioxidant Activities. Carbohydrate Polymers, 118, 41-43. https://doi.org/10.1016/j.carbpol.2014.10.074
|
[32]
|
Luzardo-Ocampo, I., Campos-Vega, R., Gaytán-Martinez, M., et al. (2017) Bioaccessibility and Antioxidant Activity of Free Phenolic Compounds and Oligosaccharides from Corn (Zea mays L.) and Common Bean (Phaseolus vulgaris L.) Chips during in Vitro Gastrointestinal Digestion and Simulat-ed Colonic Fermentation. Food Research International, 100, 304-311. https://doi.org/10.1016/j.foodres.2017.07.018
|
[33]
|
Yang, C.F., Lai, S.S., Chen, Y.H., et al. (2019) Anti-Diabetic Effect of Oligosaccharides from Seaweed Sargassum confusum via JNK-IRS1PI3K Signalling Pathways and Regulation of Gut Microbiota. Food and Chemical Toxicology, 131, Article ID: 110562. https://doi.org/10.1016/j.fct.2019.110562
|
[34]
|
程梦婕, 韩芳, 李晓迪, 等. 魔芋甘露低聚糖对高脂血症大鼠的治疗作用[J]. 华南国防医学杂志, 2017, 31(2): 71-75.
|
[35]
|
Sato, K., Nagai, N., Yamamoto, T., et al. (2019) Identifica-tion of a Novel Oligosaccharide in Maple Syrup as a Potential Alternative Saccharide for Diabetes Mellitus Patients. In-ternational Journal of Molecular Sciences, 20, 5041.
https://doi.org/10.3390/ijms20205041
|
[36]
|
Hadri, Z., Rasoamanana, R., Fromentin, G., et al. (2017) Fruc-to-Oligosaccharides Reduce Energy Intake But Do Not Affect Adiposity in Rats Fed a Low-Fat Diet But Increase Energy Intake and Reduce Fat Mass in Rats Fed a High-Fat Diet. Physiology & Behavior, 182, 114-120. https://doi.org/10.1016/j.physbeh.2017.10.009
|
[37]
|
Bahrami, G., Miraghaee, S.S., Mohammadi, B., et al. (2020) Molecular Mechanism of the Anti-Diabetic Activity of an Identified Oligosaccharide from Rosa canina. Research in Pharmaceutical Sciences, 15, 36-47.
https://doi.org/10.4103/1735-5362.278713
|
[38]
|
Rahimi, M., Sajadimajd, S., Mahdian, Z., et al. (2020) Characteri-zation and Anti-Diabetic Effects of the Oligosaccharide Fraction Isolated from Rosa canina in STZ-Induced Diabetic Rats. Carbohydrate Research, 489, 107-927.
https://doi.org/10.1016/j.carres.2020.107927
|
[39]
|
刘振宇, 邹圣灿. 燕麦β-葡聚糖复合物改善II型糖尿病大鼠症状及作用机制研究[J]. 轻工科技, 2020, 36(5): 107-110.
|
[40]
|
Li, Y.I., Chen, L., Liu, Y.Y., et al. (2018) An-ti-Inflammatory Effects in a Mouse Osteoarthritis Model of a Mixture of Glucosamine and Chitooligosaccharides Pro-duced by Bi-Enzyme Single-Step Hydrolysis. Scientific Reports, 8, Article No. 5624. https://doi.org/10.1038/s41598-018-24050-6
|
[41]
|
Dai, Z., Feng, S., Liu, A., et al. (2018) Anti-Inflammatory Ef-fects of Newly Synthesized α-Galacto-Oligosaccharides on Dextran Sulfate Sodium-Induced Colitis in C57BL6J Mice. Food Research International, 109, 350-357.
https://doi.org/10.1016/j.foodres.2018.04.054
|
[42]
|
Zhou, R., Shi, X., Gao, Y., et al. (2015) Anti-Inflammatory Ac-tivity of Guluronate Oligosaccharides Obtained by Oxidative Degradation from Alginate in Lipopolysaccharide-Activated Murine Macrophage RAW 264.7 Cells. Journal of Agricultural and Food Chemistry, 63, 160-168. https://doi.org/10.1021/jf503548a
|
[43]
|
Lin, A.E., Autran, C.A., Szyszka, A., et al. (2017) Human Milk Oligosac-charides Inhibit Growth of Group B Streptococcus. The Journal of Biological Chemistry, 292, 11243-11249. https://doi.org/10.1074/jbc.M117.789974
|
[44]
|
张善学, 郑磊, 邓秀丽, 等. 壳寡糖铜防治黄瓜细菌性角斑病的效果[J]. 中国植保导刊, 2020, 40(1): 89-99.
|
[45]
|
Bai, Y., Zheng, J., Yuan, X., et al. (2018) Chitosan Oligosaccharides Improve Glucolipid Metabolism Disorder in Liver by Suppression of Obesity-Related Inflammation and Restoration of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ). Marine Drugs, 16, 455. https://doi.org/10.3390/md16110455
|
[46]
|
Mensink, M.A., Frijlink, H.W., Van der Voort Maarschalk, K., et al. (2015) Inulin, a Flexible Oligosaccharide. II: Review of Its Pharmaceutical Applications. Carbohydrate Polymers, 134, 418-428.
https://doi.org/10.1016/j.carbpol.2015.08.022
|
[47]
|
王永俊. 不同生育时期叶面喷施海藻酸钠寡糖对小麦产量和品质的影响[D]: [硕士学位论文]. 咸阳: 西北农林科技大学, 2019.
|