|
[1]
|
Lederberg, J. (2000) Infectious History. Science, 288, 287-293. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Zhernakova, A., Kurilshikov, A. and Bonder, M.J. (2016) Pop-ulation-Based Metagenomics Analysis Reveals Markers for Gut Microbiome Composition and Diversity. Science, 352, 565-569. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Gilbert, J.A., Blaser, M.J., Caporaso, J.G., et al. (2018) Current Understanding of the Human Microbiome. Nature Medicine, 24, 392-400. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Tateda, M., Shiga, K., Saijo, S., et al. (2000) Streptococcus Anginosus in Head and Neck Squamous Cell Carcinoma: Implication in Carcinogenesis. International Journal of Molecular Medicine, 6, 699-703. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Zhang, W.L., Wang, S.S., Wang, H.F., et al. (2019) Who Is Who in Oral Cancer? Experimental Cell Research, 384, Article ID: 111634. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Kylma, A.K., Jouhi, L., Listyarifah, D., et al. (2018) Treponema Denticola Chymotrypsin-Like Proteinase as Associated with HPV-Negative Oropharyngeal Squamous Cell Carcinoma. British Journal of Cancer, 119, 89-95. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Jahanshiri, Z., Manifar, S., Moosa, H., et al. (2018) Oropharyn-geal Candidiasis in Head and Neck Cancer Patients in Iran: Species Identification, Antifungal Susceptibility and Patho-genic Characterization. Journal de Mycologie Médicale, 28, 361-366. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Ye, Q., Li, X.L., Chen, Y.S., et al. (2016) Diagnostic Value of Serological Epstein-Barr Viral Antibodies and Epstein-Barr Viral DNA Assays in the Management of Nasopharyngeal Carcinoma. Modern Oncology, 24, 3045-3048.
|
|
[9]
|
Dickson, R.P., Erb-Downward, J.R., Martinez, F.J., et al. (2016) The Microbiome and the Respiratory Tract. Annual Review of Physiology, 78, 481-504. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Bassis, C.M., Erb-downward, J.R., Dickson, R.P., et al. (2015) Analysis of the Upper Respiratory Tract Microbiotas as the Source of the Lung and Gastric Microbiotas in Healthy Individuals. MBio, 6, e37. [Google Scholar] [CrossRef]
|
|
[11]
|
Dickson, R.P., Erb-downward, J.R., Freeman, C.M., et al. (2015) Spatial Variation in the Healthy Human Lung Microbiome and the Adapted Island Model of Lung Biogeography. Annals of the American Thoracic Society, 12, 821-830. [Google Scholar] [CrossRef]
|
|
[12]
|
Apopa, P.L., Alley, L., Penney, R.B., et al. (2018) PARP1 Is Up-Regulated in Non-Small Cell Lung Cancer Tissues in the Presence of the Cyanobacterial Toxin Microcys-tin. Frontiers in Microbiology, 9, 1757. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Lin, T.Y., Huang, W.Y., Lin, J.C., et al. (2014) Increased Lung Cancer Risk among Patients with Pneumococcal Pneumonia: A Nation-Wide Population-Based Cohort Study. Lung, 192, 159-165. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Greathouse, K.L., White, J.R., Vargas, A.J., et al. (2018) Interac-tion between the Microbiome and TP53 in Human Lung Cancer. Genome Biology, 19, 123. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Yu, G., Gail, M.H., Consonni, D., et al. (2016) Characterizing Human Lung Tissue Microbiota and Its Relationship to Epidemiological and Clinical Features. Genome Biology, 17, 163. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Ishaq, S. and Nunn, L. (2015) Helicobacter pylori and Gastric Cancer: A State-of-the-Art Review. Gastroenterology and Hepatology from Bed to Bench, 8, S6-S14.
|
|
[17]
|
He, C., Yang, Z. and Lu, N. (2016) Imbalance of Gastrointestinal Microbiota in the Pathogenesis of Helicobacter pylori-Associated Diseases. Helicobacter, 21, 337-348. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Coker, O.O., Dai, Z., Nie, Y., et al. (2018) Mucosal Microbiome Dysbiosis in Gastric Carcinogenesis. Gut, 67, 1024-1032. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Nakatsu, G., Li, X., Zhou, H., et al. (2015) Gut Mucosal Micro-biome across Stages of Colorectal Carcinogenesis. Nature Communications, 6, 8727. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Kostic, A.D., Chun, E., Robertson, L., et al. (2013) Fusobacterium Nu-cleatum Potentiates Intestinal Tumorigenesis and Modulates the Tumor-Immune Microenvironment. Cell Host Microbe, 14, 207-215. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Dejea, C.M., Fathi, P., Craig, J.M., et al. (2018) Patients with Familial Adenomatous Polyposis Harbor Colonic Biofilms Containing Tumorigenic Bacteria. Science, 359, 592-597. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
He, Z., Gharaibeh, R.Z., Newsome, R.C., et al. (2019) Campylobac-ter jejuni Promotes Colorectal Tumorigenesis through the Action of Cytolethal Distending Toxin. Gut, 68, 289-300. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Rubinstein, M.R., Wang, X., Liu, W., et al. (2013) Fusobacterium Nucleatum Promotes Colorectal Carcinogenesis by Modulating E-Cadherin/β-Catenin Signaling via Its FadA Adhesin. Cell Host Microbe, 14, 195-206. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Kim, J.M., Lee, J.Y. and Kim, Y.J. (2008) Inhibition of Apoptosis in Bacteroides fragilis Enterotoxin-Stimulated Intestinal Epithelial Cells through the Induction of c-IAP-2. European Journal of Immunology, 38, 2190-2199. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Ni, J., Huang, R., Zhou, H., et al. (2019) Analysis of the Relationship between the Degree of Dysbiosis in Gut Microbiota and Prognosis at Different Stages of Primary Hepatocellular Carci-noma. Frontiers in Microbiology, 10, 1458. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Yu, L.X. and Schwabe, R.F. (2017) The Gut Microbiome and Liver Cancer: Mechanisms and Clinical Translation. Nature Reviews Gastroenterology & Hepatology, 14, 527-539. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Chen, Y., Li, H., Li, M., et al. (2017) Salvia Mihiorrhiza Polysaccha-ride Activates T Lymphocytes of Cancer Patients through Activation of TLRs Mediated-MAPK and NF-κB Signaling Pathways. Journal of Ethnopharmacology, 200, 165-173. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Fox, J.G., Feng, Y., Theve, E.J., et al. (2010) Gut Microbes Define Liver Cancer Risk in Mice Exposed to Chemical and Viral Transgenic Hepatocarcinogens. Gut, 59, 88-97. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Wang, H., Shang, X., Wan, X., et al. (2016) Increased Hepatocellular Carcinoma Risk in Chronic Hepatitis B Patients with Persistently Elevat-ed Serum Total Bile Acid: A Retrospective Cohort Study. Scientific Reports, 6, Article No. 38180. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Laniewski, P., Cui, H., Roe, D.J., et al. (2019) Features of the Cervicovag-inal Microenvironment Drive Cancer Biomarker Signatures in Patients across Cervical Carcinogenesis. Scientific Reports, 9, Article No. 7333. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Klomp, J.M., Boon, M.E., Van Haaften, M., et al. (2008) Cyto-logically Diagnosed Gardnerella vaginalis Infection and Cervical (Pre)neoplasia as Established in Population-Based Cer-vical Screening. American Journal of Obstetrics & Gynecology, 199, 480. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Ilhan, Z.E., Laniewski, P., Thomas, N., et al. (2019) Deciphering the Complex Interplay between Microbiota, HPV, Inflammation and Cancer through Cervicovaginal Metabolic Profiling. EBio Medicine, 44, 675-690. [Google Scholar] [CrossRef] [PubMed]
|