|
[1]
|
Zvěřová, M. (2019) Clinical Aspects of Alzheimer’s Disease. Clinical Biochemistry, 72, 3-6. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Butcher, H.K., Holkup, P.A. and Buckwalter, K.C. (2001) The Experience of Caring for a Family Member with Alzheimer’s Disease. Western Journal of Nursing Research, 23, 33-55. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Alzheimer’s Association (2018) Alzheimer’s Disease Facts and Figures. Alzheimer’s Dement, 14, 367-429. [Google Scholar] [CrossRef]
|
|
[4]
|
Chhatwal, J.P., Schultz, A.P., Johnson, K.A., et al. (2018) Preferential Degradation of Cognitive Networks Differentiates Alzheimer’s Disease from Ageing. Brain, 141, 1486-1500. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
O’Bryant, S.E., Mielke, M.M., Rissman, R.A., et al. (2017) Blood-Based Biomarkers in Alzheimer Disease: Current State of the Science and a Novel Collaborative Paradigm for Advancing from Discovery to Clinic. Alzheimer’s Dement, 13, 45-58. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Kumfor, F. and Piguet, O. (2013) Emotion Recognition in the Dementias: Brain Correlates and Patient Implications. Neurodegenerative Disease Management, 3, 277-288. [Google Scholar] [CrossRef]
|
|
[7]
|
Aschenbrenner, A.J., Gordon, B.A., Benzinger, T.L.S., et al. (2018) Influence of Tau PET, Amyloid PET, and Hippocampal Volume on Cognition in Alzheimer Disease. Neurology, 91, e859-e866. [Google Scholar] [CrossRef]
|
|
[8]
|
Hanseeuw, B.J., Betensky, R.A., Jacobs, H.I.L., et al. (2019) Association of Amyloid and Tau with Cognition in Preclinical Alzheimer Disease: A Longitudinal Study. JAMA Neurology, 76, 915-924. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Bussy, A., Snider, B.J., Coble, D., et al. (2019) Dominantly Inherited Alzheimer Network (2019). Effect of Apolipoprotein E4 on Clinical, Neuroimaging, and Biomarker Measures in Noncarrier Participants in the Dominantly Inherited Alzheimer Network. Neurobiology of Aging, 75, 42-50. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Bien-Ly, N., Gillespie, A.K., Walker, D., et al. (2012) Reducing Human Apolipoprotein E Levels Attenuates Age-Dependent Ab Accumulationin Mutant Human Amyloid Precursor Protein Transgenic Mice. Journal of Neuroscience, 32, 4803-4811. [Google Scholar] [CrossRef]
|
|
[11]
|
Jiang, Q., Lee, C.Y.D., Mandrekar, S., et al. (2008) ApoE Promotes the Proteolytic Degradation of Abeta. Neuron, 58, 681-693. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Simonsen, A.H., Herukka, S.K., Andreasen, N., et al. (2017) Recommendations for CSF AD Biomarkers in the Diagnostic Evaluation of Dementia. Alzheimer’s Dement, 13, 274-284. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Carbone, I., Lazzarotto, T., Ianni, M., et al. (2014) Herpes Virus in Alzheimer’s Disease: Relation to Progression of the Disease. Neurobiology of Aging, 35, 122-129. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
魏佳慧, 赵峰, 董靖玮, 等. 肠道菌群与阿尔茨海默病的相关性研究进展[J]. 临床医学进展, 2019, 9(5): 703-710.
|
|
[15]
|
Perry, R.J., Watson, P. and Hodges, J.R. (2000) The Nature and Staging of Attention Dysfunction in Early (Minimal and Mild) Alzheimer’s Disease: Relationship to Episodic and Semantic Memory Impairment. Neuropsychologia, 38, 252-271. [Google Scholar] [CrossRef]
|
|
[16]
|
Wilkinson, D. and Andersen, H. (2007) Analysis of the Effect of Memantine in Reducing the Worsening of Clinical Symptoms in Patients with Moderate to Severe Alzheimer’s Disease. Dementia and Geriatric Cognitive Disorders, 24, 138-145. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Wattmo, C., Wallin, A.K., Londos, E., et al. (2011) Predictors of Long-Term Cognitive Outcome in Alzheimer’s Disease. Alzheimer’s Research & Therapy, 3, 23. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Han, J.Y., Besser, L.M., Xiong, C., et al. (2019) Cholinesterase Inhibitors May Not Benefit Mild Cognitive Impairment and Mild Alzheimer Disease Dementia. Alzheimer Disease & Associated Disorders, 33, 87-94. [Google Scholar] [CrossRef]
|
|
[19]
|
Chen, H.S., et al. (1992) Open-Channel Block of N-methyl-D-aspartate (NMDA) Responses by Memantine: Therapeutic Advantage against NMDA Receptor-Mediated Neurotoxicity. Journal of Neuroscience, 12, 4427-4436. [Google Scholar] [CrossRef]
|
|
[20]
|
Matsunaga, S., Kishi, T. and Iwata, N. (2015) Memantine Monotherapy for Alzheimer’s Disease: A Systematic Review and Meta Analysis. PLoS ONE, 10, e0123289. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Paul, V.F., David, S., Elliott, D.B., et al. (2019) New Approaches for the Treatment of Alzheimer’s Disease. Bioorganic Medicinal Chemistry Letters, 29, 125-133. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Martin, T., Susan, A. and Marwan, S. (2019) The Path Forward in Alzheimer’s Disease Therapeutics: Reevaluating the Amyloid Cascade Hypothesis. Alzheimer’s Dementia, 1-8.
|
|
[23]
|
周杰. 阿尔茨海默病新药: 中国原研另辟蹊径[J]. 新民周刊, 2019(43): 54-58.
|
|
[24]
|
Katsimpardi, L., Litterman, N.K., Schein, P.A., et al. (2014) Vascular and Neurogenic Rejuvenation of the Aging Mouse Brain by Young Systemic Factors. Science, 344, 630-634. [Google Scholar] [CrossRef] [PubMed]
|