|
[1]
|
Edwards, D.R., Handsley, M.M. and Pennington, C.J. (2008) The ADAM Metalloproteinases. Molecular Aspects of Medicine, 29, 258-289. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Murphy, G. (2008) The ADAMs: Signalling Scissors in the Tumour Microenvironment. Nature Reviews Cancer, 8, 929-941. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Rocks, N., Paulissen, G., El Hour, M., Quesada, F., Crahay, C., Gueders, M., Foidart, J.M., Noel, A. and Cataldo, D. (2008) Emerging Roles of ADAM and ADAMTS Metalloproteinases in Cancer. Biochimie, 90, 369-379. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Kossmann, C.M., Annereau, M., Thomas-Schoemann, A., Nicco-Overney, C., Chereau, C., Batteux, F., Alexandre, J. and Lemare, F. (2017) ADAM9 Expression Promotes an Aggressive Lung Adenocarcinoma Phenotype. Tumor Biology, 39, Article ID: 1010428317716077. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Micocci, K.C., Martin, A.C., Montenegro Cde, F., Durante, A.C., Pouliot, N., Cominetti, M.R. and Selistre-de-Araujo, H.S. (2013) ADAM9 Silencing Inhibits Breast Tumor Cell Invasion in Vitro. Biochimie, 95, 1371-1378. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Tao, K., Qian, N., Tang, Y., Ti, Z., Song, W., Cao, D. and Dou, K. (2010) Increased Expression of a Disintegrin and Metalloprotease-9 in Hepatocellular Carcinoma: Implications for Tumor Progression and Prognosis. Japanese Journal of Clinical Oncology, 40, 645-651. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Duffy, M.J., McKiernan, E., O’Donovan, N. and McGowan, P.M. (2009) Role of ADAMs in Cancer Formation and Progression. Clinical Cancer Research, 15, 1140-1144. [Google Scholar] [CrossRef]
|
|
[8]
|
English, W.R., Siviter, R.J., Hansen, M. and Murphy, G. (2017) ADAM9 Is Present at Endothelial Cell-Cell Junctions and Regulates Monocyte-Endothelial Transmigration. Biochemical and Biophysical Research Communications, 493, 1057-1062. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Kim, J.M., Jeung, H.C., Rha, S.Y., Yu, E.J., Kim, T.S., Shin, Y.K., Zhang, X., Park, K.H., Park, S.W., Chung, H.C. and Powis, G. (2014) The Effect of Disintegrin-Metalloproteinase ADAM9 in Gastric Cancer Progression. Molecular Cancer Therapeutics, 13, 3074-3085. [Google Scholar] [CrossRef]
|
|
[10]
|
Fritzsche, F.R., Wassermann, K., Jung, M., Tolle, A., Kristiansen, I., Lein, M., Johannsen, M., Dietel, M., Jung, K. and Kristiansen, G. (2008) ADAM9 Is Highly Expressed in Renal Cell Cancer and Is Associated with Tumour Progression. BMC Cancer, 8, 179. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Li, J., Ji, Z., Qiao, C., Qi, Y. and Shi, W. (2013) Overexpression of ADAM9 Promotes Colon Cancer Cells Invasion. Journal of Investigative Surgery, 26, 127-133. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Cooper, C. (2008) Editorial Comment on: ADAM9 Expression Is a Significant and Independent Prognostic Marker of PSA Relapse in Prostate Cancer. European Urology, 54, 1107-1108. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Fan, X., Wang, Y., Zhang, C., Liu, L., Yang, S., Wang, Y., Liu, X., Qian, Z., Fang, S., Qiao, H. and Jiang, T. (2016) ADAM9 Expression Is Associate with Glioma Tumor Grade and Histological Type, and Acts as a Prognostic Factor in Lower-Grade Gliomas. International Journal of Molecular Sciences, 17, 1276. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Shintani, Y., Higashiyama, S., Ohta, M., Hirabayashi, H., Yamamoto, S., Yoshimasu, T., Matsuda, H. and Matsuura, N. (2004) Overexpression of ADAM9 in Non-Small Cell Lung Cancer Correlates with Brain Metastasis. Cancer Research, 64, 4190-4196. [Google Scholar] [CrossRef]
|
|
[15]
|
Caporali, S., Amaro, A., Levati, L., Alvino, E., Lacal, P.M., Mastroeni, S., Ruffini, F., Bonmassar, L., Antonini Cappellini, G.C., Felli, N., Carè, A., Pfeffer, U. and D’Atri, S. (2019) miR-126-3p Down-Regulation Contributes to Dabrafenib Acquired Resistance in Melanoma by Up-Regulating ADAM9 and VEGF-A. Journal of Experimental & Clinical Cancer Research: CR, 38, 272. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Kohga, K., Takehara, T., Tatsumi, T., Ishida, H., Miyagi, T., Hosui, A. and Hayashi, N. (2010) Sorafenib Inhibits the Shedding of Major Histocompatibility Complex Class I-Related Chain A on Hepatocellular Carcinoma Cells by Down-Regulating a Disintegrin and Metalloproteinase 9. Hepatology (Baltimore, Md.), 51, 1264-1273. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Micocci, K.C., Moritz, M.N., Lino, R.L., Fernandes, L.R., Lima, A.G., Figueiredo, C.C., Morandi, V. and Selistre-de-Araujo, H.S. (2016) ADAM9 Silencing Inhibits Breast Tumor Cells Transmigration through Blood and Lymphatic Endothelial Cells. Biochimie, 128-129, 174-182. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zigrino, P., Nischt, R. and Mauch, C. (2011) The Disintegrin-Like and Cysteine-Rich Domains of ADAM-9 Mediate Interactions between Melanoma Cells and Fibroblasts. The Journal of Biological Chemistry, 286, 6801-6807. [Google Scholar] [CrossRef]
|
|
[19]
|
Mygind, K.J., Schwarz, J., Sahgal, P., Ivaska, J. and Kveiborg, M. (2018) Loss of ADAM9 Expression Impairs beta1 Integrin Endocytosis, Focal Adhesion Formation and Cancer Cell Migration. Journal of Cell Science, 131, jcs205393. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Tannapfel, A., Anhalt, K., Hausermann, P., Sommerer, F., Benicke, M., Uhlmann, D., Witzigmann, H., Hauss, J. and Wittekind, C. (2003) Identification of Novel Proteins Associated with Hepatocellular Carcinomas Using Protein Microarrays. The Journal of Pathology, 201, 238-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Arai, J., Goto, K., Stephanou, A., Tanoue, Y., Ito, S., Muroyama, R., Matsubara, Y., Nakagawa, R., Morimoto, S., Kaise, Y., Lim, L.A., Yoshida, H. and Kato, N. (2018) Predominance of Regorafenib over Sorafenib: Restoration of Membrane-Bound MICA in Hepatocellular Carcinoma Cells. Journal of Gastroenterology and Hepatology, 33, 1075-1081. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Oh, S., Park, Y., Lee, H.J., Lee, J., Lee, S.H., Baek, Y.S., Chun, S.K., Lee, S.M., Kim, M., Chon, Y.E., Ha, Y., Cho, Y., Kim, G.J., Hwang, S.G. and Kwack, K. (2020) A Disintegrin and Metalloproteinase 9 (ADAM9) in Advanced Hepatocellular Carcinoma and Their Role as a Biomarker during Hepatocellular Carcinoma Immunotherapy. Cancers, 12, 745. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Dong, Y., Wu, Z., He, M., Chen, Y., Chen, Y., Shen, X., Zhao, X., Zhang, L., Yuan, B. and Zeng, Z. (2018) ADAM9 Mediates the Interleukin-6-Induced Epithelial-Mesenchymal Transition and Metastasis through ROS Production in Hepatoma Cells. Cancer Letters, 421, 1-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Li, S.-Q., et al. (2015) The Protective Roles of IL-6 Trans-Signaling Regulated by ADAM9 on the Liver in Carbon Tetrachloride-Induced Liver Injury in Mice. Journal of Biochemical and Molecular Toxicology, 29, 340-348. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Wan, D., Shen, S., Fu, S., Preston, B., Brandon, C., He, S., Shen, C., Wu, J., Wang, S., Xie, W., Chen, B., Liya, A., Guo, Y., Zheng, D., Zhi, Q. and Peng, B. (2016) miR-203 Suppresses the Proliferation and Metastasis of Hepatocellular Carcinoma by Targeting Oncogene ADAM9 and Oncogenic Long Non-Coding RNA HULC. Anti-Cancer Agents in Medicinal Chemistry, 16, 414-423. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Hu, D., Shen, D., Zhang, M., Jiang, N., Sun, F., Yuan, S. and Wan, K. (2017) MiR-488 Suppresses Cell Proliferation and Invasion by Targeting ADAM9 and lncRNA HULC in Hepatocellular Carcinoma. American Journal of Cancer Research, 7, 2070-2080.
|
|
[27]
|
Xiang, L.Y., Ou, H.H., Liu, X.C., Chen, Z.J., Li, X.H., Huang, Y. and Yang, D.H. (2017) Loss of Tumor Suppressor miR-126 Contributes to the Development of Hepatitis B Virus-Related Hepatocellular Carcinoma Metastasis through the Upregulation of ADAM9. Tumor Biology, 39, 1010428317709128. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Fritzsche, F.R., Jung, M., Tölle, A., Wild, P., Hartmann, A., Wassermann, K., Rabien, A., Lein, M., Dietel, M., Pilarsky, C., Calvano, D., Grützmann, R., Jung, K. and Kristiansen, G. (2008) ADAM9 Expression Is a Significant and Independent Prognostic Marker of PSA Relapse in Prostate Cancer. European Urology, 54, 1097-1106. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Sung, S.Y., Kubo, H., Shigemura, K., Arnold, R.S., Logani, S., Wang, R., Konaka, H., Nakagawa, M., Mousses, S., Amin, M., Anderson, C., Johnstone, P., Petros, J.A., Marshall, F.F., Zhau, H.E. and Chung, L.W. (2006) Oxidative Stress Induces ADAM9 Protein Expression in Human Prostate Cancer Cells. Cancer Research, 66, 9519-9526. [Google Scholar] [CrossRef]
|
|
[30]
|
Josson, S., et al. (2011) Inhibition of ADAM9 Expression Induces Epithelial Phenotypic Alterations and Sensitizes Human Prostate Cancer Cells to Radiation and Chemotherapy. Prostate, 71, 232-240. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Liu, C.M., et al. (2013) In Vivo Targeting of ADAM9 Gene Expression Using Lentivirus-Delivered shRNA Suppresses Prostate Cancer Growth by Regulating REG4 Dependent Cell Cycle Progression. PLoS ONE, 8, e53795. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Hua, Y., Liang, C., Miao, C., Wang, S., Su, S., Shao, P., Liu, B., Bao, M., Zhu, J., Xu, A., Zhang, J., Li, J. and Wang, Z. (2018) MicroRNA-126 Inhibits Proliferation and Metastasis in Prostate Cancer via Regulation of ADAM9. Oncology Letters, 15, 9051-9060. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Carl-McGrath, S., Lendeckel, U., Ebert, M., Roessner, A. and Röcken, C. (2005) The Disintegrin-Metalloproteinases ADAM9, ADAM12, and ADAM15 Are Upregulated in Gastric Cancer. International Journal of Oncology, 26, 17-24. [Google Scholar] [CrossRef]
|
|
[34]
|
Wang, J., Zhou, Y., Fei, X., Chen, X., Yan, J., Liu, B. and Zhu, Z. (2017) ADAM9 Functions as a Promoter of Gastric Cancer Growth Which Is Negatively and Post-Transcriptionally Regulated by miR-126. Oncology Reports, 37, 2033-2040. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Hamada, S., Satoh, K., Fujibuchi, W., Hirota, M., Kanno, A., Unno, J., Masamune, A., Kikuta, K., Kume, K. and Shimosegawa, T. (2012) MiR-126 Acts as a Tumor Suppressor in Pancreatic Cancer Cells via the Regulation of ADAM9. Molecular Cancer Research: MCR, 10, 3-10. [Google Scholar] [CrossRef]
|
|
[36]
|
Wang, S., Wang, X., Guo, Q., Wang, G., Han, X., Li, X., Shi, Z.W. and He, W. (2016) MicroRNA-126 Overexpression Inhibits Proliferation and Invasion in Osteosarcoma Cells. Technology in Cancer Research & Treatment, 15, Np49-59. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Liu, Q., et al. (2018) MiR-129-5p Functions as a Tumor Suppressor in Gastric Cancer Progression through Targeting ADAM9. Biomedicine & Pharmacotherapy, 105, 420-427. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Grützmann, R., et al. (2004) ADAM9 Expression in Pancreatic Cancer Is Associated with Tumour Type and Is a Prognostic Factor in Ductal Adenocarcinoma. British Journal of Cancer, 90, 1053-1058. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Yamada, D., et al. (2007) Increased Expression of ADAM9 and ADAM15 mRNA in Pancreatic Cancer. Anticancer Research, 27, 793-799.
|
|
[40]
|
Xing, C., Ye, H., Wang, W., Sun, M., Zhang, J., Zhao, Z. and Jiang, G. (2019) Circular RNA ADAM9 Facilitates the Malignant Behaviours of Pancreatic Cancer by Sponging miR-217 and Upregulating PRSS3 Expression. Artificial Cells, Nanomedicine, and Biotechnology, 47, 3920-3928. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Wu, D.M., et al. (2019) Bone Marrow Mesenchymal Stem Cell-Derived Exosomal MicroRNA-126-3p Inhibits Pancreatic Cancer Development by Targeting ADAM9. Molecular Therapy—Nucleic Acids, 16, 229-245. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Hamada, S., et al. (2012) MiR-126 Acts as a Tumor Suppressor in Pancreatic Cancer Cells via the Regulation of ADAM9. Molecular Cancer Research, 10, 3-10. [Google Scholar] [CrossRef]
|
|
[43]
|
Zhang, J., Qi, J., Chen, N., Fu, W., Zhou, B. and He, A. (2013) High Expression of a Disintegrin and Metalloproteinase-9 Predicts a Shortened Survival Time in Completely Resected Stage I Non-Small Cell Lung Cancer. Oncology Letters, 5, 1461-1466. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Zhang, J., Chen, N., Qi, J., Zhou, B. and Qiu, X. (2014) HDGF and ADAM9 Are Novel Molecular Staging Biomarkers, Prognostic Biomarkers and Predictive Biomarkers for Adjuvant Chemotherapy in Surgically Resected Stage I Non-Small Cell Lung Cancer. Journal of Cancer Research and Clinical Oncology, 140, 1441-1449. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Shintani, Y., et al. (2004) Overexpression of ADAM9 in Non-Small Cell Lung Cancer Correlates with Brain Metastasis. Cancer Research, 64, 4190-4196. [Google Scholar] [CrossRef]
|
|
[46]
|
Wan, J., Hao, L., Zheng, X. and Li, Z. (2019) Circular RNA circ_0020123 Promotes Non-Small Cell Lung Cancer Progression by Acting as a ceRNA for miR-488-3p to Regulate ADAM9 Expression. Biochemical and Biophysical Research Communications, 515, 303-309. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Wang, F.F., et al. (2016) microRNA-590 Suppresses the Tumorigenesis and Invasiveness of Non-Small Cell Lung Cancer Cells by Targeting ADAM9. Molecular and Cellular Biochemistry, 423, 29-37. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Chang, J.H., et al. (2017) Quercetin Suppresses the Metastatic Ability of Lung Cancer through Inhibiting Snail-Dependent Akt Activation and Snail-Independent ADAM9 Expression Pathways. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1864, 1746-1758. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Chang, L., Gong, F. and Cui, Y. (2015) RNAi-Mediated A Disintegrin and Metalloproteinase 9 Gene Silencing Inhibits the Tumor Growth of Non-Small Lung Cancer in Vitro and in Vivo. Molecular Medicine Reports, 12, 1197-1204. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Chang, L., Gong, F., Cai, H., Li, Z. and Cui, Y. (2016) Combined RNAi Targeting Human Stat3 and ADAM9 as Gene Therapy for Non-Small Cell Lung Cancer. Oncology Letters, 11, 1242-1250. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Lin, C.Y., Chen, H.J., Huang, C.C., Lai, L.C., Lu, T.P., Tseng, G.C., Kuo, T.T., Kuok, Q.Y., Hsu, J.L., Sung, S.Y., Hung, M.C. and Sher, Y.P. (2014) ADAM9 Promotes Lung Cancer Metastases to Brain by a Plasminogen Activator-Based Pathway. Cancer Research, 74, 5229-5243. [Google Scholar] [CrossRef]
|
|
[52]
|
Chiu, K.L., Kuo, T.T., Kuok, Q.Y., Lin, Y.S., Hua, C.H., Lin, C.Y., Su, P.Y., Lai, L.C. and Sher, Y.P. (2015) ADAM9 Enhances CDCP1 Protein Expression by Suppressing miR-218 for Lung Tumor Metastasis. Scientific Reports, 5, Article No. 16426. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Lin, C.Y., Cho, C.F., Bai, S.T., Liu, J.P., Kuo, T.T., Wang, L.J., Lin, Y.S., Lin, C.C., Lai, L.C., Lu, T.P., Hsieh, C.Y., Chu, C.N., Cheng, D.C. and Sher, Y.P. (2017) ADAM9 Promotes Lung Cancer Progression through Vascular Remodeling by VEGFA, ANGPT2, and PLAT. Scientific Reports, 7, Article No. 15108. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
O’Shea, C., McKie, N., Buggy, Y., Duggan, C., Hill, A.D., McDermott, E., O’Higgins, N. and Duffy, M.J. (2003) Expression of ADAM-9 mRNA and Protein in Human Breast Cancer. International Journal of Cancer, 105, 754-761. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Qin, C., Zhao, Y., Gong, C. and Yang, Z. (2017) MicroRNA-154/ADAM9 Axis Inhibits the Proliferation, Migration and Invasion of Breast Cancer Cells. Oncology Letters, 14, 6969-6975. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Moelans, C.B., de Weger, R.A., Monsuur, H.N., Vijzelaar, R. and van Diest, P.J. (2010) Molecular Profiling of Invasive Breast Cancer by Multiplex Ligation-Dependent Probe Amplification-Based Copy Number Analysis of Tumor Suppressor and Oncogenes. Modern Pathology, 23, 1029-1039. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Fry, J.L. and Toker, A. (2010) Secreted and Membrane-Bound Isoforms of Protease ADAM9 Have Opposing Effects on Breast Cancer Cell Migration. Cancer Research, 70, 8187-8198. [Google Scholar] [CrossRef]
|
|
[58]
|
Mazzocca, A., Coppari, R., De Franco, R., Cho, J.Y., Libermann, T.A., Pinzani, M. and Toker, A. (2005) A Secreted Form of ADAM9 Promotes Carcinoma Invasion through Tumor-Stromal Interactions. Cancer Research, 65, 4728-4738. [Google Scholar] [CrossRef]
|
|
[59]
|
Davis, S.L., Eckhardt, S.G., Tentler, J.J. and Diamond, J.R. (2014) Triple-Negative Breast Cancer: Bridging the Gap from Cancer Genomics to Predictive Biomarkers. Therapeutic Advances in Medical Oncology, 6, 88-100. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Carey, L.A., Rugo, H.S., Marcom, P.K., Mayer, E.L., Esteva, F.J., Ma, C.X., Liu, M.C., Storniolo, A.M., Rimawi, M.F., Forero-Torres, A., Wolff, A.C., Hobday, T.J., Ivanova, A., Chiu, W.K., Ferraro, M., Burrows, E., Bernard, P.S., Hoadley, K.A., Perou, C.M. and Winer, E.P. (2012) TBCRC 001: Randomized Phase II Study of Cetuximab in Combination with Carboplatin in Stage IV Triple-Negative Breast Cancer. Journal of Clinical Oncology, 30, 2615-2623. [Google Scholar] [CrossRef]
|
|
[61]
|
Nakai, K., Hung, M.C. and Yamaguchi, H. (2016) A Perspective on Anti-EGFR Therapies Targeting Triple-Negative Breast Cancer. American Journal of Cancer Research, 6, 1609-1623.
|
|
[62]
|
Costa, R., Shah, A.N., Santa-Maria, C.A., Cruz, M.R., Mahalingam, D., Carneiro, B.A., Chae, Y.K., Cristofanilli, M., Gradishar, W.J. and Giles, F.J. (2017) Targeting Epidermal Growth Factor Receptor in Triple Negative Breast Cancer: New Discoveries and Practical Insights for Drug Development. Cancer Treatment Reviews, 53, 111-119. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Wang, J.J., Zou, J.X., Wang, H., Duan, Z.J., Wang, H.B., Chen, P., Liu, P.Q., Xu, J.Z. and Chen, H.W. (2019) Histone Methyltransferase NSD2 Mediates the Survival and Invasion of Triple-Negative Breast Cancer Cells via Stimulating ADAM9-EGFR-AKT Signaling. Acta Pharmacologica Sinica, 40, 1067-1075. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Huang, C.F., Yang, S.F., Chiou, H.L., Hsu, W.H., Hsu, J.C., Liu, C.J. and Hsieh, Y.H. (2018) Licochalcone A Inhibits the Invasive Potential of Human Glioma Cells by Targeting the MEK/ERK and ADAM9 Signaling Pathways. Food & Function, 9, 6196-6204. [Google Scholar] [CrossRef]
|
|
[65]
|
Lei, D., et al. (2018) Galangin Increases ERK1/2 Phosphorylation to Decrease ADAM9 Expression and Prevents Invasion in A172 Glioma Cells. Molecular Medicine Reports, 17, 667-673. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Brösicke, N., van Landeghem, F.K., Scheffler, B. and Faissner, A. (2013) Tenascin-C Is Expressed by Human Glioma in Vivo and Shows a Strong Association with Tumor Blood Vessels. Cell and Tissue Research, 354, 409-430. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Sarkar, S., Zemp, F.J., Senger, D., Robbins, S.M. and Yong, V.W. (2015) ADAM-9 Is a Novel Mediator of Tenascin-C-Stimulated Invasiveness of Brain Tumor-Initiating Cells. Neuro-Oncology, 17, 1095-1105. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Liu, X., Wang, S., Yuan, A., Yuan, X. and Liu, B. (2016) MicroRNA-140 Represses Glioma Growth and Metastasis by Directly Targeting ADAM9. Oncology Reports, 36, 2329-2338. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Formolo, C.A., Williams, R., Gordish-Dressman, H., MacDonald, T.J., Lee, N.H. and Hathout, Y. (2011) Secretome Signature of Invasive Glioblastoma Multiforme. Journal of Proteome Research, 10, 3149-3159. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Zigrino, P., et al. (2005) Adam-9 Expression and Regulation in Human Skin Melanoma and Melanoma Cell Lines. International Journal of Cancer, 116, 853-859. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Mohd Isa, S.A., Md Salleh, M.S., Ismail, M.P. and Hairon, S.M. (2019) ADAM9 Expression in Uterine Cervical Cancer and Its Associated Factors. Asian Pacific Journal of Cancer Prevention, 20, 1081-1087. [Google Scholar] [CrossRef]
|
|
[72]
|
Tanasubsinn, P., Aung, W.P.P., Pata, S., Laopajon, W., Makeudom, A., Sastraruji, T., Kasinrerk, W. and Krisanaprakornkit, S. (2018) Overexpression of ADAM9 in Oral Squamous Cell Carcinoma. Oncology Letters, 15, 495-502. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Hsieh, M.H., Tsai, J.P., Yang, S.F., Chiou, H.L., Lin, C.L., Hsieh, Y.H. and Chang, H.R. (2019) Fisetin Suppresses the Proliferation and Metastasis of Renal Cell Carcinoma through Upregulation of MEK/ERK-Targeting CTSS and ADAM9. Cells, 8, 948-963. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Yang, X., Cui, Y., Yang, F., Sun, C. and Gao, X. (2017) MicroRNA302a Suppresses Cell Proliferation, Migration and Invasion in Osteosarcoma by Targeting ADAM9. Molecular Medicine Reports, 16, 3565-3572. [Google Scholar] [CrossRef] [PubMed]
|