学术期刊
切换导航
首 页
文 章
期 刊
投 稿
预 印
会 议
书 籍
新 闻
合 作
我 们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
核心OA期刊
Core OA Journal
数学与物理
Math & Physics
化学与材料
Chemistry & Materials
生命科学
Life Sciences
医药卫生
Medicine & Health
信息通讯
Information & Communication
工程技术
Engineering & Technology
地球与环境
Earth & Environment
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
合作期刊
Cooperation Journals
首页
数学与物理
应用数学进展
Vol. 9 No. 10 (October 2020)
期刊菜单
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
F格上的度量问题–第二类度量
Metric Problems on F-Lattices–The Second Metric
DOI:
10.12677/AAM.2020.910215
,
PDF
,
,
,
被引量
作者:
江婉文
:罗格斯大学, 新伯郎士威克文理学院统计系, 美国;
陈 鹏
:中国科学院微电子研究所,北京
关键词:
第一类度量
;
第二类度量
;
L-实直线
;
R-nbd映射簇
;
O
2
-nbd映射簇
;
Q-C
I
;
The First Metric
;
The Second Metric
;
L–Real Line
;
R-nbd Mappings
;
O
2
-nbdMappings
;
Q-C
I
摘要:
本文研究了点式一类度量-第二类度量, 通过O
2
− nbd映射簇对它进行了刻画,并进一步证明了它的诱导拓扑和它的余拓扑是一致的。另外,我们还证明了第二类度量是Q − C
I
的,最后,证明了L−实直线R(L)满足第二类度量和它的几个球映射的关系。
Abstract:
In this paper, firstly, we investigate a kind of pointwise metric-the second metric, and characterize it by using O
2
− nbd mappings. Secondly, we prove that its induced topology is consistent with its cotopology. In addition, we also prove that the second metric is Q − C
I
. Finally, we assert that L–real line is the second metric, and present the relationships between its several basic spheres.
文章引用:
江婉文, 陈鹏. F格上的度量问题–第二类度量[J]. 应用数学进展, 2020, 9(10): 1865-1878.
https://doi.org/10.12677/AAM.2020.910215
参考文献
[1]
Chen, P. (2017) Metrics in L-Fuzzy Topology. China Science Press (Postdoctoral Library), Beijing. (In Chinese)
[2]
Chen, P. and Shi, F.-G. (2007) Further Simplification of Erceg’s Metric and Its Properties. Advances in Mathematics, 36, 586-592. (In Chinese)
[3]
Shi, F.G. (2001) Pointwise Pseudo-Metrics in L-Fuzzy Set Theory. Fuzzy Sets and Systems, 121, 200-216.
https://doi.org/10.1016/S0165-0114(00)00013-0
[4]
梁基华. 关于不分明度量空间的几个问题[J]. 数学年刊, 1984, 6A(1): 59-67.
[5]
Wang, G.J. (1988) Theory of L-fuzzy Topological Space. Shanxi Normal University Publishers, Xi’an. (In Chinese)
[6]
Hutton, B. (1977) Uniformities on Fuzzy Topological Spaces. Journal of Mathematical Analysis and Applications, 58, 559-571.
https://doi.org/10.1016/0022-247X(77)90192-5
[7]
Shi, F.G. (2005) Pointwise Pseudo-Metric on the L-Real Line. Iranian Journal of Fuzzy Sys- tems, 4, 79-88.
[8]
Shi, F.G. and Zheng, C.Y. (2005) Metrization Theorems in L-Topological Spaces. Fuzzy Sets and Systems, 149, 455-471.
https://doi.org/10.1016/j.fss.2004.02.003
[9]
Peng, Y.W. (1993) Simplification of Erceg’s Fuzzy Metric Function and Its Application. Fuzzy Sets and Systems, 54, 181-189.
https://doi.org/10.1016/0165-0114(93)90275-M
[10]
Engelking, R. (1977) General Topology. Polish Science Publishers, Warszawa.
投稿
为你推荐
友情链接
科研出版社
开放图书馆