| [1] | Leon, J. (1982) Computing Automorphism Groups of Error-Correcting Codes. IEEE Transac- tions on Information Theory, 28, 496-511. https://doi.org/10.1109/TIT.1982.1056498
 | 
                     
                                
                                    
                                        | [2] | Sendrier, N. and Skersys, G. (2001) On the Computation of the Automorphism Group of a Linear Code. Proceedings of the 2001 IEEE International Symposium on Information Theory, Washington DC, 29 June 2001, 13. https://doi.org/10.1109/ISIT.2001.935876
 | 
                     
                                
                                    
                                        | [3] | Brun, T., Devetak, I. and Hsieh, M.H. (2006) Correcting Quantum Errors with Entanglement. Science, 314, 436-439. https://doi.org/10.1126/science.1131563
 | 
                     
                                
                                    
                                        | [4] | Sendrier, N. (1997) On the Dimension of the Hull. SIAM Journal on Discrete Mathematics, 10, 282-293. https://doi.org/10.1137/S0895480195294027
 | 
                     
                                
                                    
                                        | [5] | Sangwisut, E., Jitman, S., Ling, S. and Udomkavanich, P. (2015) Hulls of Cyclic and Negacyclic Codes over Finite Fields. Finite Fields and Their Applications, 33, 232-257. https://doi.org/10.1016/j.ffa.2014.12.008
 | 
                     
                                
                                    
                                        | [6] | Skersys, G. (2003) The Average Dimension of the Hull of Cyclic Codes. Discrete Applied Mathematics, 128, 275-292. https://doi.org/10.1016/S0166-218X(02)00451-1
 | 
                     
                                
                                    
                                        | [7] | Jitman, S. and Sangwisut, E. (2018) The Average Dimension of the Hermitian Hull of Consta- cyclic Codes over Finite Fields of Square Order. Advances in Mathematics of Communications, 12, 451-463. https://doi.org/10.3934/amc.2018027
 | 
                     
                                
                                    
                                        | [8] | Jin, L. (2016) Construction of MDS Codes with Complementary Duals. IEEE Transactions on Information Theory, 63, 2843-2847. https://doi.org/10.1109/TIT.2016.2644660
 | 
                     
                                
                                    
                                        | [9] | Beelen, P. and Jin, L. (2018) Explicit MDS Codes with Complementary Duals. IEEE Trans- actions on Information Theory, 64, 7188-7193. https://doi.org/10.1109/TIT.2018.2816934
 | 
                     
                                
                                    
                                        | [10] | Luo, G. and Cao, X. (2018) MDS Codes with Arbitrary Dimensional Hull and Their Applica- tions. arXiv:1807.03166 | 
                     
                                
                                    
                                        | [11] | Chen, B. and Liu, H. (2017) New Constructions of MDS Codes with Complementary Duals. IEEE Transactions on Information Theory, 64, 5776-5782. https://doi.org/10.1109/TIT.2017.2748955
 | 
                     
                                
                                    
                                        | [12] | Carlet, C., Mesnager, S., Tang, C. and Qi, Y. (2018) Euclidean and Hermitian LCD MDS Codes. Designs, Codes and Cryptography, 86, 2605-2618. https://doi.org/10.1007/s10623-018-0463-8
 | 
                     
                                
                                    
                                        | [13] | Fang, W., Fu, F.W., Li, L. and Zhu, S. (2020) Euclidean and Hermitian Hulls of MDS Codes and Their Applications to EAQECCs. IEEE Transactions on Information Theory, 66, 3527- 3537. https://doi.org/10.1109/TIT.2019.2950245
 | 
                     
                                
                                    
                                        | [14] | Li, C. (2018) Hermitian LCD Codes from Cyclic Codes. Designs, Codes and Cryptography, 86, 2261-2278. https://doi.org/10.1007/s10623-017-0447-0
 | 
                     
                                
                                    
                                        | [15] | Ding, Y. and Lu, X.H. (2020) Galois Hulls of Cyclic Codes over Finite Fields. IEICE Trans- actions on Communication, 103, 370-375. https://doi.org/10.1587/transfun.2019EAL2087
 | 
                     
                                
                                    
                                        | [16] | MacWilliams, F.J. and Sloane, N.J.A. (1977) The Theory of Error-Correcting Codes. Elsevier, Amsterdam. |