形式三角矩阵环上的PGF模
PGF Modules over Formal Triangular Matrix Rings
DOI: 10.12677/PM.2020.1011130, PDF, HTML,    国家自然科学基金支持
作者: 薛淑娴, 杨 刚*:兰州交通大学数理学,甘肃 兰州
关键词: 形式三角矩阵环PGF模Formal Triangular Matrix Ring PGF Module
摘要: 是形式三角矩阵环,其中A,B是环,U是左B右A双模。证明了若BU的平坦维数有限,UA平坦维数或内射维数有限,则左是PGF模当且仅当左A-模M1是PGF模,左B-模M2/Im(φM)是PGF模,φM:U⊗AM1→M2是单射。
Abstract: Let be a formal triangular matrix ring, where A and B are rings and U is a (B, A)-bimodule. We prove that, if BU has finite flat dimension, and UA has finite flat or injective dimension, then a left is PGF if and only if M1 is  PGF in A-Mod, M2/Im(φM) is PGF in B-Mod and φM:U⊗AM1→M2 is a monomorphism.
文章引用:薛淑娴, 杨刚. 形式三角矩阵环上的PGF模[J]. 理论数学, 2020, 10(11): 1088-1096. https://doi.org/10.12677/PM.2020.1011130

参考文献

[1] Auslander, M. and Bridge, M. (1969) Stable Module Theory. In: Memoirs of the American Mathe- matical Society, Vol. 94, American Mathematical Society, Providence, RI.
[2] Enochs, E.E. and Jenda, O.M.G. (2000) Relative Homological Algebra. De Gruyter, Amsterdam. [Google Scholar] [CrossRef
[3] Ding, N.Q., Li, Y.L. and Mao, L.X. (2009) Strongly Gorenstein Flat Modules. Journal of the Aus- tralian Mathematical Society, 86, 323-338. [Google Scholar] [CrossRef
[4] Mao, L.X. and Ding, N.Q. (2008) Gorenstein FP-Injective and Gorenstein Flat Modules. Journal of Algebra and Its Applications, 7, 491-506. [Google Scholar] [CrossRef
[5] Gillespie, J. (2010) Model Structures on Modules over Ding-Chen Rings. Homology, Homotopy and Applications, 12, 61-73. [Google Scholar] [CrossRef
[6] Yang, G., Liu, Z.K. and Liang, L. (2013) Ding Projective and Ding Injective Modules. Algebra Colloquium, 20, 601-612. [Google Scholar] [CrossRef
[7] Mao, L.X. (2019) Ding Modules and Dimensions over Formal Triangular Matrix Rings. Preprint arxiv.org/abs/1912.06968
[8] Green, E.L. (1982) On the Representation Theory of Rings in Matrix Form. Pacific Journal of Math- ematics, 100, 123-138. [Google Scholar] [CrossRef
[9] Krylov, P. and Tuganbaev, A. (2017) Formal Matrices. Springer, Cham.
[10] Sˇaroch, J. and Sˇt’ov ˇc´ıek, J. (2020) Singular Compactness and Definability for Σ-Cotorsion and Goren- stein Modules. Selecta Mathematica, 26, Article No. 23. [Google Scholar] [CrossRef
[11] Haghany, A. and Varadarajan, K. (2000) Study of Modules over Formal Triangular Matrix Rings. Journal of Pure and Applied Algebra, 147, 41-58. [Google Scholar] [CrossRef
[12] Fossum, R.M., Griffith, P. and Reiten, I. (2006) Trivial Extensions of Abelian Categories: Homological Algebra of Trivial Extensions of Abelian Catergories with Applications to Ring Theory. Springer, Berlin.
[13] Haghany, A. and Varadarajan, K. (1999) Study of Formal Triangular Matrix Rings. Communications in Algebra, 27, 5507-5525. [Google Scholar] [CrossRef
[14] Rotman, J.J. (2008) An Introduction to Homological Algebra. Springer Science & Business Media, New York.
[15] Asadollahi, J. and Salarian, S. (2006) On the Vanishing of Ext over Formal Triangular Matrix Rings. Forum Mathematicum, 18, 951-966. [Google Scholar] [CrossRef
[16] Mao, L.X. (2020) Gorenstein Flat Modules and Dimensions over Formal Triangular Matrix Rings. Journal of Pure and Applied Algebra, 224, Article ID: 106207. [Google Scholar] [CrossRef
[17] Enochs, E.E., Cort´es-Izurdiaga, M.C. and Torrecillas, B. (2014) Gorenstein Conditions over Triangu- lar Matrix Rings. Journal of Pure and Applied Algebra, 218, 1544-1554. [Google Scholar] [CrossRef