|
[1]
|
Miki, K. and Clapham, D.E. (2013) Rheotaxis Guides Mammalian Sperm. Current Biology, 23, 443-452. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Vasily, K., Jörn, D., Martyn, B., et al. (2014) Rheotaxis Facilitates Upstream Navigation of Mammalian Sperm Cells. eLife, 3, e02403. [Google Scholar] [CrossRef]
|
|
[3]
|
Zhang, Z., Liu, J., Meriano, J., et al. (2016) Human Sperm Rheotaxis: A Passive Physical Process. Scientific Reports, 6, Article No. 23553. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Bahat, A., Caplan, S.R. and Eisenbach, M. (2012) Thermotaxis of Human Sperm Cells in Extraordinarily Shallow Temperature Gradients over a Wide Range. PLoS ONE, 7, e41915. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Martin, B., Qui, V., Ingo, W., et al. (2005) Ca2+ Spikes in the Flagellum Control Chemotactic Behavior of Sperm. The EMBO Journal, 24, 2741-2752. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Yuriy, K., et al. (2011) Progesterone Activates the Principal Ca2+ Channel of Human Sperm. Nature, 471, 387-391. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Cosson, J., Huitorel, P. and Gagnon, C. (2003) How Spermatozoa Come to Be Confined to Surfaces. Cell Motility and the Cytoskeleton, 54, 56-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Denissenko, P., Kantsler, V., Smith, D.J., et al. (2012) Human Spermatozoa Migration in Microchannels Reveals Boundary-Following Navigation. Proceedings of the National Academy of Sciences of the United States of America, 109, 8007-8010. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Fisher, H.S. and Hoekstra, H.E. (2010) Competition Drives Cooperation among Closely Related Sperm of Deer Mice. Nature, 463, 801-803. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Kleven, O., Fossoy, F., Laskemoen, T., et al. (2009) Compara-tive Evidence for the Evolution of Sperm Swimming Speed by Sperm Competition and Female Sperm Storage Duration in Passerine Birds. Evolution, 63, 2466-2473. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Berendsen, J.T.W., Kruit, S.A., Atak, N., et al. (2020) Flow-Free Microfluidic Device for Quantifying Chemotaxis in Spermatozoa. Analytical Chemistry, 92, 3302-3306. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Chen, Y.-A., Huang, Z.-W., Tsai, F.-S., et al. (2010) Analysis of Sperm Concentration and Motility in a Microfluidic Device. Microfluidics and Nanofluidics, 10, 59-67. [Google Scholar] [CrossRef]
|
|
[13]
|
Zaferani, M., Palermo, G.D. and Abbaspourrad, A. (2019) Stric-tures of a Microchannel Impose Fierce Competition to Select for Highly Motile Sperm. Science Advances, 5, eaav2111. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Kaynak, M., Ozcelik, A., Nourhani, A., et al. (2017) Acoustic Actua-tion of Bioinspired Microswimmers. Lab Chip, 17, 395-400. [Google Scholar] [CrossRef]
|
|
[15]
|
Magdanz, V., Medina-Sanchez, M., Schwarz, L., et al. (2017) Spermatozoa as Functional Components of Robotic Microswimmers. Advanced Materials, 29, Article ID: 1606301. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Xu, H., Medina-Sanchez, M., Maitz, M.F., et al. (2020) Sperm Micromotors for Cargo Delivery through Flowing Blood. ACS Nano, 14, 2982-2993. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Cripe, P., Richfield, O. and Simons, J. (2016) Sperm Pairing and Measures of Efficiency in Planar Swimming Models. SPORA: A Journal of Biomathematics, 2, 35-48. [Google Scholar] [CrossRef]
|
|
[18]
|
Pearce, D.J.G., Hoogerbrugge, L.A., Hook, K.A., et al. (2018) Cellular Geometry Controls the Efficiency of Motile Sperm Aggregates. Journal of the Royal Society Interface, 15, Arti-cle ID: 20180702. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Elgeti, J., Kaupp, U.B. and Gompper, G. (2010) Hydrodynamics of Sperm Cells near Surfaces. Biophysical Journal, 99, 1018-1026. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Ishimoto, K., Cosson, J. and Gaffney, E.A. (2016) A Simulation Study of Sperm Motility Hydrodynamics near Fish Eggs and Spheres. Journal of Theoretical Biology, 389, 187-197. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Ishimoto, K. and Gaffney, E.A. (2014) A Study of Spermatozoan Swimming Stability near a Surface. Journal of Theoretical Biology, 360, 187-199. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Liu, Q.-Y., Tang, X.-Y., Chen, D.-D., et al. (2020) Hydrodynamic Study of Sperm Swimming near a Wall Based on the Immersed Boundary-Lattice Boltzmann Method. Engineering Ap-plications of Computational Fluid Mechanics, 14, 853-870. [Google Scholar] [CrossRef]
|
|
[23]
|
Montenegro-Johnson, T.D., Gadêlha, H. and Smith, D.J. (2015) Spermatozoa Scattering by a Microchannel Feature: An Elastohydrodynamic Model. Royal Society Open Science, 2, Article ID: 140475. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Qin, F.-H., Huang, W.-X. and Sung, H.J. (2012) Simulation of Small Swimmer Motions Driven by Tail/Flagellum Beating. Computers & Fluids, 55, 109-117. [Google Scholar] [CrossRef]
|
|
[25]
|
Smith, D.J. and Blake, J.R. (2010) Surface Accumulation of Spermatozoa: A Fluid Dynamic Phenomenon. The Mathematical Scientist, 34, 74-87.
|
|
[26]
|
Smith, D.J., Gaffney, E.A., Blake, J.R., et al. (2009) Human Sperm Accumulation near Surfaces: A Simulation Study. Journal of Fluid Mechanics, 621, 289-320. [Google Scholar] [CrossRef]
|
|
[27]
|
Schoeller, S.F. and Keaveny, E.E. (2018) From Flagellar Undulations to Collective Motion: Predicting the Dynamics of Sperm Suspensions. Journal of the Royal Society Interface, 15, Article ID: 20170834. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Olson, S.D. (2013) Fluid Dynamic Model of Invertebrate Sperm Chemotactic Motility with Varying Calcium Inputs. Journal of Biomechanics, 46, 329-337. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Olson, S.D., Suarez, S.S. and Fauci, L.J. (2011) Coupling Bi-ochemistry and Hydrodynamics Captures Hyperactivated Sperm Motility in a Simple Flagellar Model. Journal of Theo-retical Biology, 283, 203-216. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Ishikawa, T. and Omori, T. (2016) Upward Swimming of a Sperm Cell in Shear Flow. Physical Review E, 93, Article ID: 032402. [Google Scholar] [CrossRef]
|
|
[31]
|
Ishimoto, K. and Gaffney, E.A. (2015) Fluid Flow and Sperm Guidance: A Simulation Study of Hydrodynamic Sperm Rheotaxis. Journal of the Royal Society Interface, 12, Article ID: 20150172. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Ishimoto, K. and Gaffney, E.A. (2017) Boundary Element Methods for Particles and Microswimmers in a Linear Viscoelastic Fluid. Journal of Fluid Mechanics, 831, 228-251. [Google Scholar] [CrossRef]
|
|
[33]
|
Ishimoto, K. and Gaffney, E.A. (2018) Hydrodynamic Clustering of Human Sperm in Viscoelastic Fluids. Scientific Reports, 8, Article No. 15600. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Omori, T. and Ishikawa, T. (2019) Swimming of Spermatozoa in a Maxwell Fluid. Micromachines (Basel), 10, 78. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Tung, C.K., Lin, C., Harvey, B., et al. (2017) Fluid Viscoelasticity Pro-motes Collective Swimming of Sperm. Scientific Reports, 7, Article No. 3152. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Gillies, E.A., Cannon, R.M., Green, R.B., et al. (2009) Hydro-dynamic Propulsion of Human Sperm. Journal of Fluid Mechanics, 625, 445-474. [Google Scholar] [CrossRef]
|
|
[37]
|
Bayly, P.V. and Wilson, K.S. (2015) Analysis of Unstable Modes Distinguishes Mathematical Models of Flagellar Motion. Journal of the Royal Society Interface, 12, Article ID: 20170370. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Rorai, C., Zaitsev, M. and Karabasov, S. (2018) On the Limitations of Some Popular Numerical Models of Flagellated Microswimmers: Importance of Long-Range Forces and Flagellum Waveform. Royal Society Open Science, 6, Article ID: 180745. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Son, J., Jafek, A.R., Carrell, D.T., et al. (2018) Sperm-Like-Particle (SLP) Behavior in Curved Microfluidic Channels. Microfluidics and Nanofluidics, 23, 4. [Google Scholar] [CrossRef]
|
|
[40]
|
Liu, J. and Ruan, H. (2020) Modeling of an Acoustically Actuated Artificial Micro-Swimmer. Bioinspiration & Biomimetics, 15, Article ID: 036002. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Youngren, G.K. and Acrivos, A. (1975) Stokes Flow past a Parti-cle of Arbitrary Shape: A Numerical Method of Solution. Journal of Fluid Mechanics, 69, 377-403. [Google Scholar] [CrossRef]
|
|
[42]
|
Cui, J., Liu, Y. and Fu, B.M. (2020) Numerical Study on the Dynamics of Primary Cilium in Pulsatile Flows by the Immersed Boundary-Lattice Boltzmann Method. Biomechanics and Modeling in Mechanobiology, 19, 21-35. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Liu, F.-F., et al. (2014) Simulation of Biomimetic Travel-ing-Wave Micro-Pump Using a Modified Immersed Boundary-Lattice Boltzmann Method. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 228, 189-198. [Google Scholar] [CrossRef]
|
|
[44]
|
Joseph, O.C., Alistair, R., Parthasarathi, M., et al. (2016) Appli-cation of a Lattice Boltzmann-Immersed Boundary Method for Fluid-Filament Dynamics and Flow Sensing. Journal of Biomechanics, 49, 2143-2151. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Ye, T., Phan-Thien, N. and Lim, C.T. (2016) Particle-Based Simulations of Red Blood Cells—A Review. Journal of Biomechanics, 49, 2255-2266. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Yang, Y., Elgeti, J. and Gompper, G. (2008) Cooperation of Sperm in Two Dimensions: Synchronization, Attraction, and Aggregation through Hydrodynamic Interactions. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 78, Article ID: 061903. [Google Scholar] [CrossRef]
|
|
[47]
|
Rode, S., Elgeti, J. and Gompper, G. (2019) Sperm Motility in Modulated Microchannels. New Journal of Physics, 21, Article ID: 013016. [Google Scholar] [CrossRef]
|
|
[48]
|
Peskin, C.S. (1972) Flow Patterns around Heart Valves: A Numer-ical Method. Journal of Computational Physics, 2, 252-271. [Google Scholar] [CrossRef]
|
|
[49]
|
Dillon, H.R. and Zhuo, J. (2011) Using the Immersed Bound-ary Method to Model Complex Fluids-Structure Interaction in Sperm Motility. Discrete & Continuous Dynamical Sys-tems B, 15, 343-355. [Google Scholar] [CrossRef]
|
|
[50]
|
Marcos, Tran, N.P., Saini, A.R., et al. (2014) Analysis of a Swimming Sperm in a Shear Flow. Microfluidics and Nanofluidics, 17, 809-819. [Google Scholar] [CrossRef]
|
|
[51]
|
Gong, A., Rode, S., Kaupp, U.B., et al. (2020) The Steering Gaits of Sperm. Philosophical Transactions of the Royal Society B: Biological Sciences, 375, Article ID: 20190149. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Gadelha, H. and Gaffney, E.A. (2019) Flagellar Ultrastructure Sup-presses Buckling Instabilities and Enables Mammalian Sperm Navigation in High-Viscosity Media. Journal of the Royal Society Interface, 16, Article ID: 20180668. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Kumar, M. and Ardekani, A.M. (2019) Effect of External Shear Flow on Sperm Motility. Soft Matter, 15, 6269-6277. [Google Scholar] [CrossRef]
|
|
[54]
|
Kumar, M., Walkama, D.M., Guasto, J.S., et al. (2019) Flow-Induced Buckling Dynamics of Sperm Flagella. Physical Review E, 100, Article ID: 063107. [Google Scholar] [CrossRef]
|
|
[55]
|
Cortez, R. (2001) The Method of Regularized Stokeslets. SIAM Journal on Scientific Computing, 23, 1204-1225. [Google Scholar] [CrossRef]
|
|
[56]
|
Ishijima, S. (2019) Modulatory Mechanisms of Sliding of Nine Outer Doublet Microtubules for Generating Planar and Half-Helical Flagellar Waves. Molecular Human Reproduction, 25, 320-328. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Rothschild (1963) Non-Random Distribution of Bull Spermatozoa in a Drop of Sperm Suspension. Nature, 198, 1221-1222. [Google Scholar] [CrossRef]
|
|
[58]
|
Schoeller, S.F., Holt, W.V. and Keaveny, E.E. (2020) Collective Dynamics of Sperm Cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 375, Article ID: 20190384. [Google Scholar] [CrossRef] [PubMed]
|