[1]
|
du Souich, P., García, A.G., Vergés, J., et al. (2009) Immunomodulatory and Anti-Inflammatory Effects of Chondroitin Sulphate. Journal of Cellular and Molecular Medicine, 13, 1451-1463.
https://doi.org/10.1111/j.1582-4934.2009.00826.x
|
[2]
|
Köwitsch, A., Zhou, G., Groth, T., et al. (2018) Medical Application of Glycosaminoglycans: A Review. Journal of Tissue Engineering and Regenerative Medicine, 12, e23-e41. https://doi.org/10.1002/term.2398
|
[3]
|
Ustyuzhanina, N.E., Bilan, M.I., Panina, E.G., et al. (2018) Structure and Anti-Inflammatory Activity of a New Unusual Fucosylated Chondroitin Sulfate from Cucumaria djakonovi. Marine Drugs, 16, 389.
https://doi.org/10.3390/md16100389
|
[4]
|
Ilieva, K.M., Cheung, A., Mele, S., et al. (2017) Chondroitin Sulfate Proteoglycan 4 and Its Potential as an Antibody Immunotherapy Target across Different Tumor Types. Frontiers in Immunology, 8, 1911.
https://doi.org/10.3389/fimmu.2017.01911
|
[5]
|
Kastana, P., Choleva, E., Poimenidi, E., et al. (2019) Insight into the Role of Chondroitin Sulfate E in Angiogenesis. The FEBS Journal, 286, 2921-2936. https://doi.org/10.1111/febs.14830
|
[6]
|
Zhu, W.M., Ji, Y., Wang, Y., et al. (2018) Structural Characterization and in Vitro Antioxidant Activities of Chondroitin Sulfate Purified from Andrias davidianus Cartilage. Carbohydrate Polymers, 196, 398-404.
https://doi.org/10.1016/j.carbpol.2018.05.047
|
[7]
|
Volpi, N. (2019) Chondroitin Sulfate Safety and Quality. Molecules, 24, 1447.
https://doi.org/10.3390/molecules24081447
|
[8]
|
Higashi, K., Okamoto, Y., Mukuno, A., et al. (2015) Functional Chondroitin Sulfate from Enteroctopus dofleini Containing a 3-O-Sulfo Glucuronic Acid Residue. Carbohydrate Polymers, 134, 557-565.
https://doi.org/10.1016/j.carbpol.2015.07.082
|
[9]
|
Niu, Q.F., Li, G.Y., Li, C., et al. (2020) Two Different Fucosylated Chondroitin Sulfates: Structural Elucidation, Stimulating Hematopoiesis and Immune-Enhancing Effects. Carbohydrate Polymers, 230, Article ID: 115698.
https://doi.org/10.1016/j.carbpol.2019.115698
|
[10]
|
Lin, K. and Kasko, A.M. (2014) Carbohydrate-Based Polymers for Immune Modulation. ACS Macro Letters, 3, 652-657. https://doi.org/10.1021/mz5002417
|
[11]
|
Lee, J.Y., Lee, H.S., Kang, N.W., et al. (2020) Blood Component Ridable and CD44 Receptor Targetable Nanoparticles Based on a Maleimide-Functionalized Chondroitin Sulfate Derivative. Carbohydrate Polymers, 230, Article ID: 115568. https://doi.org/10.1016/j.carbpol.2019.115568
|
[12]
|
Yang, J.Y., Jiang, S., Guan, Y., et al. (2019) Pancreatic Islet Surface Engineering with a starPEG-Chondroitin Sulfate Nanocoating. Biomaterials Science, 7, 2308-2316. https://doi.org/10.1039/C9BM00061E
|
[13]
|
Farrugia, B.L., Lord, M.S., Whitelock, J.M., et al. (2018) Harnessing Chondroitin Sulphate in Composite Scaffolds to Direct Progenitor and Stem Cell Function for Tissue Repair. Biomaterials Science, 6, 947-957.
https://doi.org/10.1039/C7BM01158J
|
[14]
|
Ledbetter, E.C., Munger, R.J., Ring, R.D., et al. (2006) Efficacy of Two Chondroitin Sulfate Ophthalmic Solutions in the Therapy of Spontaneous Chronic Corneal Epithelial Defects and Ulcerative Keratitis Associated with Bullous Keratopathy in Dogs. Veterinary Ophthalmology, 9, 77-87. https://doi.org/10.1111/j.1463-5224.2006.00439.x
|
[15]
|
Pérez-balbuena, A.L., Ochoa-tabares, J.C., Belalcazar-rey, S., et al. (2016) Efficacy of a Fixed Combination of 0.09 % Xanthan gum/0.1 % Chondroitin Sulfate Preservative Free vs Polyethylene Glycol/Propylene Glycol in Subjects with Dry Eye Disease: A Multicenter Randomized Controlled Trial. BMC Ophthalmology, 16, 164.
https://doi.org/10.1186/s12886-016-0343-9
|
[16]
|
Eslani, M., Movahedan, A., Afsharkhamseh, N., et al. (2014) The Role of Toll-Like Receptor 4 in Corneal Epithelial Wound Healing. Investigative Ophthalmology & Visual Science, 55, 6108-6115. https://doi.org/10.1167/iovs.14-14736
|
[17]
|
Sandri, G., Bonferoni, M.C., Rossi, S., et al. (2016) Platelet Lysate and Chondroitin Sulfate Loaded Contact Lenses to Heal Corneal Lesions. International Journal of Pharmaceutics, 509, 188-196.
https://doi.org/10.1016/j.ijpharm.2016.05.045
|
[18]
|
Wang, X.K., Majumdar, S., Ma, G., et al. (2017) Chondroitin Sulfate-Based Biocompatible Crosslinker Restores Corneal Mechanics and Collagen Alignment. Investigative Ophthalmology & Visual Science, 58, 3887-3895.
https://doi.org/10.1167/iovs.16-21292
|
[19]
|
Lynch, A.P. and Ahearne, M. (2013) Strategies for Developing Decellularized Corneal Scaffolds. Experimental Eye Research, 108, 42-47. https://doi.org/10.1016/j.exer.2012.12.012
|
[20]
|
Chakraborty, J., Roy, S., Murab, S., et al. (2019) Modulation of Macrophage Phenotype, Maturation, and Graft Integration through Chondroitin Sulfate Cross-Linking to Decellularized Cornea. ACS Biomaterials Science & Engineering, 5, 165-179. https://doi.org/10.1021/acsbiomaterials.8b00251
|
[21]
|
da Cunha, A.L., Aguiar, J.A.K., da Silva, F.S.C., et al. (2017) Do Chondroitin Sulfates with Different Structures Have Different Activities on Chondrocytes and Macrophages? International Journal of Biological Macromolecules, 103, 1019-1031. https://doi.org/10.1016/j.ijbiomac.2017.05.123
|
[22]
|
Jomphe, C., Gabriac, M., Hale, T.M., et al. (2008) Chondroitin Sulfate Inhibits the Nuclear Translocation of Nuclear Factor-kappaB in Interleukin-1beta-Stimulated Chondrocytes. Basic & Clinical Pharmacology & Toxicology, 102, 59-65.
|
[23]
|
Campo, G.M., Avenoso, A., Campo, S., et al. (2008) Purified Human Plasma Glycosaminoglycans Reduced NF-kappaB Activation, Pro-Inflammatory Cytokine Production and Apoptosis in LPS-Treated Chondrocytes. Innate Immunity, 14, 233-246. https://doi.org/10.1177/1753425908094725
|
[24]
|
Tat, S.K., Pelletier, J.P., Verges, J., et al. (2007) Chondroitin and Glucosamine Sulfate in Combination Decrease the Pro-Resorptive Properties of Human Osteoarthritis Subchondral Bone Osteoblasts: A Basic Science Study. Arthritis Research & Therapy, 9, R117. https://doi.org/10.1186/ar2325
|
[25]
|
Calamia, V., Lourido, L., Fernandez-Puente, P., et al. (2012) Secretome Analysis of Chondroitin Sulfate-Treated Chondrocytes Reveals Anti-Angiogenic, Anti-Inflammatory and Anti-Catabolic Properties. Arthritis Research & Therapy, 14, R202. https://doi.org/10.1186/ar4040
|
[26]
|
Korotkyi, O.H., Vovk, A.A., Dranitsina, A.S., et al. (2019) The Influence of Probiotic Diet and Chondroitin Sulfate Administration on Ptgs2, Tgfb1 and Col2a1 Expression in Rat Knee Cartilage during Monoiodoacetate-Induced Osteoarthritis. Minerva Medica, 110, 419-424. https://doi.org/10.23736/S0026-4806.19.06063-4
|
[27]
|
Canas, N., Gorina, R., Planas, A.M., et al. (2010) Chondroitin Sulfate Inhibits Lipopolysaccharide-Induced Inflammation in Rat Astrocytes by Preventing Nuclear Factor Kappa B Activation. Neuroscience, 167, 872-879.
https://doi.org/10.1016/j.neuroscience.2010.02.069
|
[28]
|
Liao, W.Z., Luo, Z., Liu, D., et al. (2015) Structure Characterization of a Novel Polysaccharide from Dictyophora indusiata and Its Macrophage Immunomodulatory Activities. Journal of Agricultural and Food Chemistry, 63, 535-544.
https://doi.org/10.1021/jf504677r
|
[29]
|
Zhang, M.M., Wu, W.J., Ren, Y., et al. (2017) Structural Characterization of a Novel Polysaccharide from Lepidium meyenii (Maca) and Analysis of Its Regulatory Function in Macrophage Polarization in Vitro. Journal of Agricultural and Food Chemistry, 65, 1146-1157. https://doi.org/10.1021/acs.jafc.6b05218
|
[30]
|
Wu, F., Zhou, C., Zhou, D., et al. (2018) Immune-Enhancing Activities of Chondroitin Sulfate in Murine Macrophage RAW 264.7 Cells. Carbohydrate Polymers, 198, 611-619. https://doi.org/10.1016/j.carbpol.2018.06.071
|
[31]
|
Wang, Y.J., Qi, Q.C., Li, A., et al. (2016) Immuno-Enhancement Effects of Yifei Tongluo Granules on Cyclophosphamide-Induced Immunosuppression in Balb/c Mice. Journal of Ethnopharmacology, 194, 72-82.
https://doi.org/10.1016/j.jep.2016.08.046
|
[32]
|
Wojdasiewicz, P., Poniatowski, Ł.A., Szukiewicz, D., et al. (2014) The Role of Inflammatory and Anti-Inflammatory Cytokines in the Pathogenesis of Osteoarthritis. Mediators of Inflammation, 2014, Article ID: 561459.
https://doi.org/10.1155/2014/561459
|
[33]
|
Hochberg, M.C., Martel-Pelletier, J., Monfort, J., et al. (2016) Combined Chondroitin Sulfate and Glucosamine for Painful Knee Osteoarthritis: A Multicentre, Randomised, Double-Blind, Non-Inferiority Trial versus Celecoxib. Annals of the Rheumatic Diseases, 75, 37-44. https://doi.org/10.1136/annrheumdis-2014-206792
|
[34]
|
Reginster, J.Y., Dudler, J., Blicharski, T., et al. (2017) Pharmaceutical-Grade Chondroitin Sulfate Is as Effective as Celecoxib and Superior to Placebo in Symptomatic Knee Osteoarthritis: The ChONdroitin versus CElecoxib versus Placebo Trial (CONCEPT). Annals of the Rheumatic Diseases, 76, 1537-1543.
https://doi.org/10.1136/annrheumdis-2016-210860
|
[35]
|
Wildi, L.M., Raynauld, J.P., Martel-Pelletier, J., et al. (2011) Chondroitin Sulphate Reduces Both Cartilage Volume Loss and Bone Marrow Lesions in Knee Osteoarthritis Patients Starting as Early as 6 Months after Initiation of Therapy: A Randomised, Double-Blind, Placebo-Controlled Pilot Study Using MRI. Annals of the Rheumatic Diseases, 70, 982-989. https://doi.org/10.1136/ard.2010.140848
|
[36]
|
Terencio, M.C., Ferrandiz, M.L., Carceller, M.C., et al. (2016) Chondroprotective Effects of the Combination Chondroitin Sulfate-Glucosamine in a Model of Osteoarthritis Induced by Anterior Cruciate Ligament Transection in Ovariectomised Rats. Biomedicine & Pharmacotherapy, 79, 120-128. https://doi.org/10.1016/j.biopha.2016.02.005
|
[37]
|
Lin, T.S., Hsieh, C.H., Kuo, C., et al. (2020) Sulfation Pattern of Chondroitin Sulfate in Human Osteoarthritis Cartilages Reveals a Lower Level of Chondroitin-4-Sulfate. Carbohydrate Polymers, 229, Article ID: 115496.
https://doi.org/10.1016/j.carbpol.2019.115496
|
[38]
|
Pudelko, A., Wisowski, G., Olczyk, K., et al. (2019) The Dual Role of the Glycosaminoglycan Chondroitin-6-Sulfate in the Development, Progression and Metastasis of Cancer. The FEBS Journal, 286, 1815-1837.
https://doi.org/10.1111/febs.14748
|
[39]
|
Li, F., Tendam, G.B., Murugan, S., et al. (2008) Involvement of Highly Sulfated Chondroitin Sulfate in the Metastasis of the Lewis Lung Carcinoma Cells. Journal of Biological Chemistry, 283, 34294-34304.
https://doi.org/10.1074/jbc.M806015200
|
[40]
|
Mizumoto, S., Takahashi, J. and Sugahara, K. (2012) Receptor for Advanced Glycation End Products (RAGE) Functions as Receptor for Specific Sulfated Glycosaminoglycans, and Anti-RAGE Antibody or Sulfated Glycosaminoglycans Delivered in Vivo Inhibit Pulmonary Metastasis of Tumor Cells. Journal of Biological Chemistry, 287, 18985-18994. https://doi.org/10.1074/jbc.M111.313437
|
[41]
|
Borsig, L., Wang, L., Cavalcante, M.C., et al. (2007) Selectin Blocking Activity of a Fucosylated Chondroitin Sulfate Glycosaminoglycan from Sea Cucumber. Effect on Tumor Metastasis and Neutrophil Recruitment. Journal of Biological Chemistry, 282, 14984-14991. https://doi.org/10.1074/jbc.M610560200
|
[42]
|
Liu, X., Liu, Y., Hao, J., et al. (2016) In Vivo Anti-Cancer Mechanism of Low-Molecular-Weight Fucosylated Chondroitin Sulfate (LFCS) from Sea Cucumber Cucumaria frondosa. Molecules, 21, 625.
https://doi.org/10.3390/molecules21050625
|
[43]
|
Pan, H.C., Xue, W.K., Zhao, W.J., et al. (2020) Expression and Function of Chondroitin 4-Sulfate and Chondroitin 6-Sulfate in Human Glioma. FASEB Journal, 34, 2853-2868. https://doi.org/10.1096/fj.201901621RRR
|
[44]
|
Zhang, J.Z., Sun, B.N., Zhang, K., et al. (2020) Screening and Surveillance of Multiple Solid Tumours Using Plasma Placental-Like Chondroitin Sulfate A (pl-CSA). International Journal of Medical Sciences, 17, 161-169.
https://doi.org/10.7150/ijms.39444
|
[45]
|
Pellegatta, S., Savoldo, B., Di Ianni, N., et al. (2018) Constitutive and TNFα-Inducible Expression of Chondroitin Sulfate Proteoglycan 4 in Glioblastoma and Neurospheres: Implications for CAR-T Cell Therapy. Science Translational Medicine, 10, eaao2731. https://doi.org/10.1126/scitranslmed.aao2731
|
[46]
|
Harrer, D.C., Dörrie, J., Schaft, N., et al. (2019) CSPG4 as Target for CAR-T-Cell Therapy of Various Tumor Entities-Merits and Challenges. International Journal of Molecular Sciences, 20, 5942.
https://doi.org/10.3390/ijms20235942
|
[47]
|
Yang, M.Y., Zhou, G.S., Castano-izquierdo, H., et al. (2015) Biomineralization of Natural Collagenous Nanofibrous Membranes and Their Potential Use in Bone Tissue Engineering. Journal of Biomedical Nanotechnology, 11, 447-456.
https://doi.org/10.1166/jbn.2015.2038
|
[48]
|
Palmer, L.C., Newcomb, C.J., Kaltz, S.R., et al. (2008) Biomimetic Systems for Hydroxyapatite Mineralization Inspired by Bone and Enamel. Chemical Reviews, 108, 4754-4783. https://doi.org/10.1021/cr8004422
|
[49]
|
George, A. and Veis, A. (2008) Phosphorylated Proteins and Control over Apatite Nucleation, Crystal Growth, and Inhibition. Chemical Reviews, 108, 4670-4693. https://doi.org/10.1021/cr0782729
|
[50]
|
Xiao, X., He, D., Liu, F., et al. (2008) Preparation and Characterization of Hydroxyapatite/Chondroitin Sulfate Composites by Biomimetic Synthesis. Materials Chemistry and Physics, 112, 838-843.
https://doi.org/10.1016/j.matchemphys.2008.06.055
|
[51]
|
Ehrlich, H., Hanke, T., Simon, P., et al. (2010) Carboxymethylation of the Fibrillar Collagen with Respect to Formation of Hydroxyapatite. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 92, 542-551.
|
[52]
|
Embery, G., Hall, R., Waddington, R., et al. (2001) Proteoglycans in Dentinogenesis. Critical Reviews in Oral Biology & Medicine, 12, 331-349. https://doi.org/10.1177/10454411010120040401
|
[53]
|
Liu, X.Y. and Lim, S.W. (2003) Templating and Supersaturation-Driven Anti-Templating: Principles of Biomineral Architecture. Journal of the American Chemical Society, 125, 888-895. https://doi.org/10.1021/ja020355d
|
[54]
|
He, H.H., Shao, C.Y., Mu, Z., et al. (2020) Promotion Effect of Immobilized Chondroitin Sulfate on Intrafibrillar Mineralization of Collagen. Carbohydrate Polymers, 229, Article ID: 115547.
https://doi.org/10.1016/j.carbpol.2019.115547
|
[55]
|
Avirutnan, P., Zhang, L., Punyadee, N., et al. (2007) Secreted NS1 of Dengue Virus Attaches to the Surface of Cells via Interactions with Heparan Sulfate and Chondroitin Sulfate E. PLoS Pathogens, 3, 1798-1812.
https://doi.org/10.1371/journal.ppat.0030183
|
[56]
|
Daisuke, K., Shota, E., Ippei, W., et al. (2010) Antiviral Activity of Chondroitin Sulphate E Targeting Dengue Virus Envelope Protein. Antiviral Research, 88, 236-243. https://doi.org/10.1016/j.antiviral.2010.09.002
|
[57]
|
Jinno-Oue, A., Tanaka, A., Shimizu, N., et al. (2013) Inhibitory Effect of Chondroitin Sulfate Type E on the Binding Step of Human T-Cell Leukemia Virus Type 1. AIDS Research and Human Retroviruses, 29, 621-629.
https://doi.org/10.1089/aid.2012.0156
|
[58]
|
Huang, N., Wu, M.Y., Zheng, C.B., et al. (2013) The Depolymerized Fucosylated Chondroitin Sulfate from Sea Cucumber Potently Inhibits HIV Replication via Interfering with Virus Entry. Carbohydrate Research, 380, 64-69.
https://doi.org/10.1016/j.carres.2013.07.010
|
[59]
|
Galus, A., Mallet, J.M., Lembo, D., et al. (2016) Hexagonal-Shaped Chondroitin Sulfate Self-Assemblies Have Exalted Anti-HSV-2 Activity. Carbohydrate Polymers, 136, 113-120. https://doi.org/10.1016/j.carbpol.2015.08.054
|
[60]
|
Wang, D.A., Varghese, S., Sharma, B., et al. (2007) Multifunctional Chondroitin Sulphate for Cartilage Tissue-Biomaterial Integration. Nature Materials, 6, 385-392. https://doi.org/10.1038/nmat1890
|
[61]
|
Reyes, J.M., Herretes, S., Pirouzmanesh, A., et al. (2005) A Modified Chondroitin Sulfate Aldehyde Adhesive for Sealing Corneal Incisions. Investigative Ophthalmology & Visual Science, 46, 1247-1250.
https://doi.org/10.1167/iovs.04-1192
|
[62]
|
Sterhin, I., Nahas, Z., Arora, K., et al. (2010) A Versatile pH Sensitive Chondroitin Sulfate-PEG Tissue Adhesive and Hydrogel. Biomaterials, 31, 2788-2797. https://doi.org/10.1016/j.biomaterials.2009.12.033
|
[63]
|
Trujillo-de Santiago, G., Sharifi, R., Yue, K., et al. (2019) Ocular Adhesives: Design, Chemistry, Crosslinking Mechanisms, and Applications. Biomaterials, 197, 345-367. https://doi.org/10.1016/j.biomaterials.2019.01.011
|
[64]
|
Wang, X.F., Ren, J., He, H.Q., et al. (2019) Self-Assembled Nanoparticles of Reduction-Sensitive Poly(lactic-co-glycolic acid)-Conjugated Chondroitin Sulfate A for Doxorubicin Delivery: Preparation, Characterization and Evaluation. Pharmaceutical Development and Technology, 24, 794-802.
https://doi.org/10.1080/10837450.2019.1599914
|
[65]
|
Zhang, H., Xu, J.K., Xing, L., et al. (2017) Self-Assembled Micelles Based on Chondroitin Sulfate/Poly(d,l-lactideco- glycolide) Block Copolymers for Doxorubicin Delivery. Journal of Colloid and Interface Science, 492, 101-111.
https://doi.org/10.1016/j.jcis.2016.12.046
|
[66]
|
Naor, D., Siomov, R.V. and Ish-shalom, D. (1997) CD44: Structure, Function, and Association with the Malignant Process. Advances in Cancer Research, 71, 241-319. https://doi.org/10.1016/S0065-230X(08)60101-3
|
[67]
|
Oh, J.Y., Lee, R.H., Yu, J.M., et al. (2012) Intravenous Mesenchymal Stem Cells Prevented Rejection of Allogeneic Corneal Transplants by Aborting the Early Inflammatory Response. Molecular Therapy, 20, 2143-2152.
https://doi.org/10.1038/mt.2012.165
|
[68]
|
Fernandes-Cunha, G.M., Na, K.S., Putra, I., et al. (2019) Corneal Wound Healing Effects of Mesenchymal Stem Cell Secretome Delivered within a Viscoelastic Gel Carrier. Stem Cells Translational Medicine, 8, 478-489.
https://doi.org/10.1002/sctm.18-0178
|
[69]
|
Sandri, G., Bonferoni, M.C., Rossi, S., et al. (2012) Thermosensitive Eye Drops Containing Platelet Lysate for the Treatment of Corneal Ulcers. International Journal of Pharmaceutics, 426, 1-6.
https://doi.org/10.1016/j.ijpharm.2011.12.059
|
[70]
|
Zhang, M., Ma, Y., Wang, Z., et al. (2019) A CD44-Targeting Programmable Drug Delivery System for Enhancing and Sensitizing Chemotherapy to Drug-Resistant Cancer. ACS Applied Materials & Interfaces, 11, 5851-5861.
https://doi.org/10.1021/acsami.8b19798
|
[71]
|
Liu, M., Khan, A.R., Ji, J., et al. (2018) Crosslinked Self-Assembled Nanoparticles for Chemo-Sonodynamic Combination Therapy Favoring Antitumor, Antimetastasis Management and Immune Responses. Journal of Controlled Release, 290, 150-164. https://doi.org/10.1016/j.jconrel.2018.10.007
|
[72]
|
Zorzi, G.K., Párraga, J.E., Seijo, B., et al. (2011) Hybrid Nanoparticle Design Based on Cationized Gelatin and the Polyanions Dextran Sulfate and Chondroitin Sulfate for Ocular Gene Therapy. Macromolecular Bioscience, 11, 905-913. https://doi.org/10.1002/mabi.201100005
|
[73]
|
Chen, W.Q., Liu, Y., Liang, X., et al. (2017) Chondroitin Sulfate-Functionalized Polyamidoamine as a Tumor-Targeted Carrier for miR-34a Delivery. Acta Biomaterialia, 57, 238-250. https://doi.org/10.1016/j.actbio.2017.05.030
|
[74]
|
Zu, M.H., Ma, L.J., Zhang, X.Q., et al. (2019) Chondroitin Sulfate-Functionalized Polymeric Nanoparticles for Colon Cancer-Targeted Chemotherapy. Colloids and Surfaces B: Biointerfaces, 177, 399-406.
https://doi.org/10.1016/j.colsurfb.2019.02.031
|
[75]
|
Nie, W., Zhang, B., Pan, R., et al. (2020) Surface Modification with Chondroitin Sulfate Targets Nanoparticles to the Neuronal Cell Membrane in the Substantia Nigra. ACS Chemical Neuroscience, 11, 197-204.
https://doi.org/10.1021/acschemneuro.9b00597
|
[76]
|
Tan, G., Li, J., Song, Y., et al. (2019) Phenylboronic Acid-Tethered Chondroitin Sulfate-Based Mucoadhesive Nanostructured Lipid Carriers for the Treatment of Dry Eye Syndrome. Acta Biomaterialia, 99, 350-362.
https://doi.org/10.1016/j.actbio.2019.08.035
|
[77]
|
Krishnaswami, V., Kandasamy, R., Alagarsamy, S., et al. (2018) Biological Macromolecules for Ophthalmic Drug Delivery to Treat Ocular Diseases. International Journal of Biological Macromolecules, 110, 7-16.
https://doi.org/10.1016/j.ijbiomac.2018.01.120
|
[78]
|
Mitragotri, S., Anderson, D.G., Chen, X.Y., et al. (2015) Accelerating the Translation of Nanomaterials in Biomedicine. ACS Nano, 9, 6644-6654. https://doi.org/10.1021/acsnano.5b03569
|
[79]
|
Elzoghby, A.O., Elgohary, M.M., Kamel, N.M., et al. (2015) Implications of Protein- and Peptide-Based Nanoparticles as Potential Vehicles for Anticancer Drugs. Advances in Protein Chemistry and Structural Biology, 98, 169-221.
https://doi.org/10.1016/bs.apcsb.2014.12.002
|
[80]
|
Drbohlavova, J., Adam, V., Kizek, R., et al. (2009) Quantum Dots—Characterization, Preparation and Usage in Biological Systems. International Journal of Molecular Sciences, 10, 656-673. https://doi.org/10.3390/ijms10020656
|
[81]
|
Abdelhamid, A.S., Zayed, D.G., Hlemy, M.W., et al. (2018) Lactoferrin-Tagged Quantum Dots-Based Theranostic Nanocapsules for Combined COX-2 Inhibitor/Herbal Therapy of Breast Cancer. Nanomedicine (London), 13, 2637-2656.
https://doi.org/10.2217/nnm-2018-0196
|
[82]
|
Hu, G.L., Zhang, H.Q., Zhang, L., et al. (2015) Integrin-Mediated Active Tumor Targeting and Tumor Microenvironment Response Dendrimer-Gelatin Nanoparticles for Drug Delivery and Tumor Treatment. International Journal of Pharmaceutics, 496, 1057-1068. https://doi.org/10.1016/j.ijpharm.2015.11.025
|
[83]
|
Abdelhamid, A.S., Helmy, M.W., Ebrahim, S.M., et al. (2018) Layer-by-Layer Gelatin/Chondroitin Quantum Dots-Based Nanotheranostics: Combined Rapamycin/Celecoxib Delivery and Cancer Imaging. Nanomedicine (London), 13, 1707-1730. https://doi.org/10.2217/nnm-2018-0028
|
[84]
|
Hinz, B. (2007) Formation and Function of the Myofibroblast during Tissue Repair. Journal of Investigative Dermatology, 127, 526-537. https://doi.org/10.1038/sj.jid.5700613
|
[85]
|
Rieger, K.A.B., Nathan, P. and Schiffman, J.D. (2013) Designing Electrospun Nanofiber Mats to Promote Wound Healing—A Review. Journal of Materials Chemistry B, 1, 4531. https://doi.org/10.1039/c3tb20795a
|
[86]
|
Pezeshki-Modaress, M., Mirzadeh, H., Zandi, M., et al. (2017) Gelatin/Chondroitin Sulfate Nanofibrous Scaffolds for Stimulation of Wound Healing: In-Vitro and In-Vivo Study. Journal of Biomedical Materials Research Part A, 105, 2020-2034. https://doi.org/10.1002/jbm.a.35890
|
[87]
|
Bhowmick, S., Scharnweber, D. and Koul, V. (2016) Co-Cultivation of Keratinocyte-Human Mesenchymal Stem Cell (hMSC) on Sericin Loaded Electrospun Nanofibrous Composite Scaffold (Cationic Gelatin/Hyaluronan/Chondroitin Sulfate) Stimulates Epithelial Differentiation in hMSCs: In Vitro Study. Biomaterials, 88, 83-96.
https://doi.org/10.1016/j.biomaterials.2016.02.034
|
[88]
|
Sadeghi, A., Zandi, M., Pezeshki-Modaress, M., et al. (2019) Tough, Hybrid Chondroitin Sulfate Nanofibers as a Promising Scaffold for Skin Tissue Engineering. International Journal of Biological Macromolecules, 132, 63-75.
https://doi.org/10.1016/j.ijbiomac.2019.03.208
|
[89]
|
Saporito, F., Sandri, G., Bonferoni, M.C., et al. (2018) Electrospun Gelatin(-)Chondroitin Sulfate Scaffolds Loaded with Platelet Lysate Promote Immature Cardiomyocyte Proliferation. Polymers (Basel), 10, 208.
https://doi.org/10.3390/polym10020208
|
[90]
|
McCrary, M.R., Jesson, K., Wei, Z.Z., et al. (2020) Cortical Transplantation of Brain-Mimetic Glycosaminoglycan Scaffolds and Neural Progenitor Cells Promotes Vascular Regeneration and Functional Recovery after Ischemic Stroke in Mice. Advanced Healthcare Materials, 9, Article ID: 1900285. https://doi.org/10.1002/adhm.201900285
|
[91]
|
Gao, Y.L., Li, B., Kong, W.L., et al. (2018) Injectable and Self-Crosslinkable Hydrogels Based on Collagen Type II and Activated Chondroitin Sulfate for Cell Delivery. International Journal of Biological Macromolecules, 118, 2014-2020. https://doi.org/10.1016/j.ijbiomac.2018.07.079
|
[92]
|
Zhou, X., Wang, J., Fang, W., et al. (2018) Genipin Cross-Linked Type II Collagen/Chondroitin Sulfate Composite Hydrogel-Like Cell Delivery System Induces Differentiation of Adipose-Derived Stem Cells and Regenerates Degenerated Nucleus Pulposus. Acta Biomaterialia, 71, 496-509. https://doi.org/10.1016/j.actbio.2018.03.019
|
[93]
|
Fan, M., Ma, Y., Tan, H.P., et al. (2017) Covalent and Injectable Chitosan-Chondroitin Sulfate Hydrogels Embedded with Chitosan Microspheres for Drug Delivery and Tissue Engineering. Materials Science and Engineering C: Materials for Biological Applications, 71, 67-74. https://doi.org/10.1016/j.msec.2016.09.068
|
[94]
|
Miyata, S. and Kitagawa, H. (2017) Formation and Remodeling of the Brain Extracellular Matrix in Neural Plasticity: Roles of Chondroitin Sulfate and Hyaluronan. Biochimica et Biophysica Acta—General Subjects, 1861, 2420-2434.
https://doi.org/10.1016/j.bbagen.2017.06.010
|
[95]
|
Karumbaiah, L., Enam, S.F., Brown, A.C., et al. (2015) Chondroitin Sulfate Glycosaminoglycan Hydrogels Create Endogenous Niches for Neural Stem Cells. Bioconjugate Chemistry, 26, 2336-2349.
https://doi.org/10.1021/acs.bioconjchem.5b00397
|
[96]
|
Liu, C., Fan, L., Xing, J., et al. (2019) Inhibition of Astrocytic Differentiation of Transplanted Neural Stem Cells by Chondroitin Sulfate Methacrylate Hydrogels for the Repair of Injured Spinal Cord. Biomaterials Science, 7, 1995-2008.
https://doi.org/10.1039/C8BM01363B
|
[97]
|
Lai, J.Y., Li, Y.T., Cho, C.H., et al. (2012) Nanoscale Modification of Porous Gelatin Scaffolds with Chondroitin Sulfate for Corneal Stromal Tissue Engineering. International Journal of Nanomedicine, 7, 1101-1114.
https://doi.org/10.2147/IJN.S28753
|
[98]
|
Zhou, F.F., Zhang, X.Z., Cai, D.D., et al. (2017) Silk Fibroin-Chondroitin Sulfate Scaffold with Immuno-Inhibition Property for Articular Cartilage Repair. Acta Biomaterialia, 63, 64-75. https://doi.org/10.1016/j.actbio.2017.09.005
|
[99]
|
Yu, X., Qian, G., Chen, S., et al. (2017) A Tracheal Scaffold of Gelatin-Chondroitin Sulfate-Hyaluronan-Polyvinyl Alcohol with Orientated Porous Structure. Carbohydrate Polymers, 159, 20-28.
https://doi.org/10.1016/j.carbpol.2016.12.017
|
[100]
|
Singh, B.N., Veeresh, V., Mallick, S.P., et al. (2019) Design and Evaluation of Chitosan/Chondroitin Sulfate/Nano-Bioglass Based Composite Scaffold for Bone Tissue Engineering. International Journal of Biological Macromolecules, 133, 817-830. https://doi.org/10.1016/j.ijbiomac.2019.04.107
|
[101]
|
Liu, Y., Lv, H.L., Ren, L., et al. (2016) Improving the Moisturizing Properties of Collagen Film by Surface Grafting of Chondroitin Sulfate for Corneal Tissue Engineering. Journal of Biomaterials Science, Polymer Edition, 27, 758-772.
https://doi.org/10.1080/09205063.2016.1160561
|
[102]
|
Kong, J., Wei, B., Groth, T., et al. (2018) Biomineralization Improves Mechanical and Osteogenic Properties of Multilayer-Modified PLGA Porous Scaffolds. Journal of Biomedical Materials Research Part A, 106, 2714-2725.
https://doi.org/10.1002/jbm.a.36487
|