|
[1]
|
Eltzschig, H.K. and Eckle, T. (2011) Ischemia and Reperfusion—From Mechanism to Translation. Nature Medicine, 17, 1391-1401. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Saliminejad, K., Khorram Khorshid, H.R., Soleymani Fard, S., et al. (2019) An Overview of microRNAs: Biology, Functions, Therapeutics, and Analysis Methods. Journal of Cellular Physiology, 234, 5451-5465. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Szabo, L., Morey, R., Palpant, N.J., et al. (2015) Statistically Based Splicing Detection Reveals Neural Enrichment and Tissue-Specific Induction of Circular RNA during Human Fetal Development. Genome Biology, 16, 126. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Di, Y., Lei, Y., Yu, F., et al. (2014) MicroRNAs Expression and Function in Cerebral Ischemia Reperfusion Injury. Journal of Molecular Neuroscience, 53, 242-250. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
任佳悦, 马骏. 心肌缺血再灌注中的氧化应激反应[J]. 心肺血管病杂志, 2019, 38: 1074-1076.
|
|
[6]
|
Aito, H., Aalto, K.T. and Raivio, K.O. (2002) Biphasic ATP Depletion Caused by Transient Oxidative Exposure Is Associated with Apoptotic Cell Death in Rat Embryonal Cortical Neurons. Pediatric Research, 52, 40-45. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
苏志达, 李瑜, 李宏建. 卒中治疗药物临床前的实验研究[J]. 国外医学(脑血管疾病分册), 2000, 8(5): 290-293.
|
|
[8]
|
石晶, 姚裕家, 李炜如, 等. 实验性缺氧缺血新生猪脑线粒体DNA损伤的研究[J]. 中国当代儿科杂志, 2006, 8(1): 45-48.
|
|
[9]
|
Doyle, K.P., Simon, R.P. and Stenzel-Poore, M.P. (2008) Mechanisms of Ischemic Brain Damage. Neuropharmacology, 55, 310-318. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Durukan, A. and Tatlisumak, T. (2007) Acute Ischemic Stroke: Overview of Major Experimental Rodent Models, Pathophysiology, and Therapy of Focal Cerebral Ischemia. Pharmacology Biochemistry and Behavior, 87, 179-197. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
赵秋振, 薄爱华, 贾勇圣. 钙离子抑制剂对脑缺血再灌注损伤神经元凋亡相关基因表达的影响[J]. 陕西医学杂志, 2009, 38(4): 409-411.
|
|
[12]
|
Jin, R., Yang, G. and Li, G. (2010) Inflammatory Mechanisms in Ischemic Stroke: Role of Inflammatory Cells. Journal of Leukocyte Biology, 87, 779-789. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Yang, G.Y., Gong, C., Qin, Z., et al. (1998) Inhibition of TNFalpha Attenuates Infarct Volume and ICAM-1 Expression in Ischemic Mouse Brain. Neuroreport, 9, 2131-2134. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Mehta, S.L., Manhas, N. and Raghubir, R. (2007) Molecular Targets in Cerebral Ischemia for Developing Novel Therapeutics. Brain Research Reviews, 54, 34-66. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Foyouzi-Youssefi, R., Arnaudeau, S., Borner, C., et al. (2000) Bcl-2 Decreases the Free Ca2+ Concentration within the Endoplasmic Reticulum. Proceedings of the National Academy of Sciences of the United States of America, 97, 5723-5728. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Yuan, Y., Wang, J.Y., Xu, L.Y., et al. (2010) MicroRNA Expression Changes in the Hippocampi of Rats Subjected to Global Ischemia. Journal of Clinical Neuroscience, 17, 774-778. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Fierro-Fernandez, M., Miguel, V. and Lamas, S. (2016) Role of RedoximiRs in Fibrogenesis. Redox Biology, 7, 58-67. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Liu, Y., Qiang, W., Xu, X., et al. (2015) Role of miR-182 in Response to Oxidative Stress in the Cell Fate of Human Fallopian Tube Epithelial Cells. Oncotarget, 6, 38983-38998. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Kim, G.S., Jung, J.E., Niizuma, K., et al. (2009) CK2 Is a Novel Negative Regulator of NADPH Oxidase and a Neuroprotectant in Mice after Cerebral Ischemia. Journal of Neuroscience, 29, 14779-14789. [Google Scholar] [CrossRef]
|
|
[20]
|
Liang, Y., Xu, J., Wang, Y., et al. (2018) Inhibition of MiRNA-125b Decreases Cerebral Ischemia/Reperfusion Injury by Targeting CK2alpha/NADPH Oxidase Signaling. Cellular Physiology and Biochemistry, 45, 1818-1826. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Chapple, S.J., Keeley, T.P., Mastronicola, D., et al. (2016) Bach1 Differentially Regulates Distinct Nrf2-Dependent Genes in Human Venous and Coronary Artery Endothelial Cells Adapted to Physiological Oxygen Levels. Free Radical Biology and Medicine, 92, 152-162. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Suzuki, H., Tashiro, S., Sun, J., et al. (2003) Cadmium Induces Nuclear Export of Bach1, a Transcriptional Repressor of Heme Oxygenase-1 Gene. Journal of Biological Chemistry, 278, 49246-49253. [Google Scholar] [CrossRef]
|
|
[23]
|
Sun, X., Li, X., Ma, S., et al. (2018) MicroRNA-98-5p Ameliorates Oxygen-Glucose Deprivation/Reoxygenation (OGD/R)-Induced Neuronal Injury by Inhibiting Bach1 and Promoting Nrf2/ARE Signaling. Biochemical and Biophysical Research Communications, 507, 114-121. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Sacco, J. and Adeli, K. (2012) MicroRNAs: Emerging Roles in Lipid and Lipoprotein Metabolism. Current Opinion in Lipidology, 23, 220-225. [Google Scholar] [CrossRef]
|
|
[25]
|
Aschrafi, A., Schwechter, A.D., Mameza, M.G., et al. (2008) MicroRNA-338 Regulates Local Cytochrome c Oxidase IV mRNA Levels and Oxidative Phosphorylation in the Axons of Sympathetic Neurons. Journal of Neuroscience, 28, 12581-12590. [Google Scholar] [CrossRef]
|
|
[26]
|
Nishi, H., Ono, K., Iwanaga, Y., et al. (2010) MicroRNA-15b Modulates Cellular ATP Levels and Degenerates Mitochondria via Arl2 in Neonatal Rat Cardiac Myocytes. Journal of Biological Chemistry, 285, 4920-4930. [Google Scholar] [CrossRef]
|
|
[27]
|
Li, Y., Li, Q., Zhang, O., et al. (2019) miR-202-5p Protects Rat against Myocardial Ischemia Reperfusion Injury by Downregulating the Expression of Trpv2 to Attenuate the Ca (2+) Overload in Cardiomyocytes. Journal of Cellular Biochemistry, 120, 13680-13693. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Cha, M.J., Jang, J.K., Ham, O., et al. (2013) MicroRNA-145 Suppresses ROS-Induced Ca2+ Overload of Cardiomyocytes by Targeting CaMKIIdelta. Biochemical and Biophysical Research Communications, 435, 720-726. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Li, S., Strelow, A., Fontana, E.J., et al. (2002) IRAK-4: A Novel Member of the IRAK Family with the Properties of an IRAK-Kinase. Proceedings of the National Academy of Sciences of the United States of America, 99, 5567-5572. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Kim, T.W., Staschke, K., Bulek, K., et al. (2007) A Critical Role for IRAK4 Kinase Activity in Toll-Like Receptor-Mediated Innate Immunity. Journal of Experimental Medicine, 204, 1025-1036. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Takeuchi, O. and Akira, S. (2001) Toll-Like Receptors; Their Physiological Role and Signal Transduction System. International Immunopharmacology, 1, 625-635. [Google Scholar] [CrossRef]
|
|
[32]
|
Tian, F., Yuan, C., Hu, L., et al. (2017) MicroRNA-93 Inhibits Inflammatory Responses and Cell Apoptosis after Cerebral Ischemia Reperfusion by Targeting Interleukin-1 Receptor-Associated Kinase 4. Experimental and Therapeutic Medicine, 14, 2903-2910. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Kim, C.H., Han, B.S., Moon, J., et al. (2015) Nuclear Receptor Nurr1 Agonists Enhance Its Dual Functions and Improve Behavioral Deficits in an Animal Model of Parkinson’s Disease. Proceedings of the National Academy of Sciences of the United States of America, 112, 8756-8761. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Saijo, K., Winner, B., Carson, C.T., et al. (2009) A Nurr1/CoREST Pathway in Microglia and Astrocytes Protects Dopaminergic Neurons from Inflammation-Induced Death. Cell, 137, 47-59. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Xie, X., Peng, L., Zhu, J., et al. (2017) miR-145-5p/Nurr1/TNF-alpha Signaling-Induced Microglia Activation Regulates Neuron Injury of Acute Cerebral Ischemic/Reperfusion in Rats. Frontiers in Molecular Neuroscience, 10, 383. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Lim, Y., Cho, H. and Kim, E.K. (2016) Brain Metabolism as a Modulator of Autophagy in Neurodegeneration. Brain Research, 1649, 158-165. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Korolchuk, V.I. and Rubinsztein, D.C. (2011) Regulation of Autophagy by Lysosomal Positioning. Autophagy, 7, 927-928. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Tian, F., Yuan, C. and Yue, H. (2018) MiR-138/sirt1 Axis Is Implicated in Impaired Learning and Memory Abilities of Cerebral Ischemia/Reperfusion Injured Rats. Experimental Cell Research, 367, 232-240. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Sun, H., Zhong, D., Wang, C., et al. (2018) MiR-298 Exacerbates Ischemia/Reperfusion Injury Following Ischemic Stroke by Targeting Act1. Cellular Physiology and Biochemistry, 48, 528-539. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
姜恩平. 蒺藜皂苷对脑缺血再灌注损伤的保护作用及其机制的研究[D]: [博士学位论文]. 长春: 吉林大学, 2010.
|
|
[41]
|
孙文阁, 费志宏, 周静. 脑缺血再灌注损伤与基因表达调控研究进展[J]. 赤峰学院学报(自然科学版), 2010, 26(7): 47-52.
|
|
[42]
|
Guo, B., Godzik, A. and Reed, J.C. (2001) Bcl-G, a Novel Pro-Apoptotic Member of the Bcl-2 Family. Journal of Biological Chemistry, 276, 2780-2785. [Google Scholar] [CrossRef]
|
|
[43]
|
Yao, X., Yao, R., Yi, J., et al. (2019) Upregulation of miR-496 Decreases Cerebral Ischemia/Reperfusion Injury by Negatively Regulating BCL2L14. Neuroscience Letters, 696, 197-205. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Ran, M., Li, Z., Yang, L., et al. (2015) Calorie Restriction Attenuates Cerebral Ischemic Injury via Increasing SIRT1 Synthesis in the Rat. Brain Research, 1610, 61-68. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Wang, L., Zhang, L., Chen, Z.B., et al. (2009) Icariin Enhances Neuronal Survival after Oxygen and Glucose Deprivation by Increasing SIRT1. European Journal of Pharmacology, 609, 40-44. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Lu, H. and Wang, B. (2017) SIRT1 Exerts Neuroprotective Effects by Attenuating Cerebral Ischemia/Reperfusion-Induced Injury via Targeting p53/microRNA-22. International Journal of Molecular Medicine, 39, 208-216. [Google Scholar] [CrossRef] [PubMed]
|