野黄芩苷抗肿瘤作用机制研究进展
Research Progress on the Anti-Tumor Mechanism of Scutellarin
DOI: 10.12677/TCM.2021.101013, PDF,    国家自然科学基金支持
作者: 李怡萍, 张春蕾, 杨丽丽, 宋海燕*:上海中医药大学附属龙华医院脾胃病研究所,上海;徐娇雅:上海中医药大学附属龙华医院脾胃病研究所,上海;上海中医药大学附属光华医院痛风科,上海
关键词: 野黄芩苷抗肿瘤作用机制Scutellarin Anti-Tumor Mechanism
摘要: 迄今多数恶性肿瘤仍然缺乏有效治疗。近年来,天然药物抗肿瘤作用受到越来越多的关注。野黄芩苷(scutellarin, SCU)是从黄芩、半枝莲、白花蛇舌草等中药中提取的有效活性成分,具有抗炎、改善心脑缺血、抗氧化、抗纤维化、抗肿瘤等广泛的生物学作用。文献报道,野黄芩苷对人脑胶质瘤、肝癌、肺癌等肿瘤均有抑制作用。其抗肿瘤作用机制主要包括:诱导肿瘤细胞凋亡,调控细胞周期抑制肿瘤细胞生长增殖,抑制细胞侵袭转移,增强化疗药物敏感性等。本文就野黄芩苷抗肿瘤作用相关机制进行综述,以期有助于促进该天然化合物开发为有效治疗肿瘤的新型药物。
Abstract: So far, most malignant tumors are still lack of effective treatment. In recent years, more and more attention has been paid to the anti-tumor effect of natural drugs. Scutellarin is an active ingredient extracted from Scutellaria baicalensis, Scutellaria barbata, Hedyotis diffusa and other traditional Chinese herbal medicines. It has a wide range of biological effects, such as anti-inflammatory, improving heart and brain ischemia, anti-oxidation, anti-fibrosis, anti-tumor and so on. It is reported that scutellarin has inhibitory effect on human glioma, liver cancer and lung cancer, etc. Its anti-tumor mechanism mainly includes: inducing apoptosis of tumor cells, suppressing growth and proliferation of tumor cells through regulating cell cycle, inhibiting invasion and metastasis, enhancing sensitivity of tumor cells to chemotherapy and so on. In this paper, the anti-tumor mechanism of scutellarin was reviewed, in order to promote the development of this natural compound as a new drug for effective treatment of tumors.
文章引用:李怡萍, 张春蕾, 徐娇雅, 杨丽丽, 宋海燕. 野黄芩苷抗肿瘤作用机制研究进展[J]. 中医学, 2021, 10(1): 101-106. https://doi.org/10.12677/TCM.2021.101013

参考文献

[1] So, T.H., Chan, S.K., Lee, V.H., et al. (2019) Chinese Medicine in Cancer Treatment—How Is It Practised in the East and the West? Clinical Oncology, 31, 578-588.
https://doi.org/10.1016/j.clon.2019.05.016
[2] Li, S. and Zhang, B. (2013) Traditional Chinese Medicine Network Pharmacology: Theory, Methodology and Application. Chinese Journal of Natural Medicines, 11, 110-120.
https://doi.org/10.1016/S1875-5364(13)60037-0
[3] Liang, X., Li, H. and Li, S. (2014) A Novel Network Pharmacology Approach to Analyse Traditional Herbal Formulae: The Liu-Wei-Di-Huang Pill as a Case Study. Molecular BioSystems, 10, 1014-1022.
https://doi.org/10.1039/C3MB70507B
[4] 姜蔚. 野黄芩苷药理作用及机制研究进展[J]. 中国药理学通报, 2018, 34(12): 1634-1637.
[5] 杨炳华. 野黄芩苷的药物动力学及代谢研究[D]: [博士学位论文]. 沈阳: 沈阳药科大学, 2004.
[6] Li, L., Li, L., Chen, C., et al. (2015) Scutellarin’s Cardiovascular Endothelium Protective Mechanism: Important Role of PKG-Iα. PLoS ONE, 10, e0139570.
https://doi.org/10.1371/journal.pone.0139570
[7] Zhang, L., Sun, S., Li, W., et al. (2017) Effect of Scutellarin Inhibits Collagen-Induced Arthritis through TLR4/NF-κB-Mediated Inflammation. Molecular Medicine Reports, 16, 5555-5560.
https://doi.org/10.3892/mmr.2017.7292
[8] 张璐妮, 邵玉, 宁明杰, 等. 野黄芩苷双向调节肿瘤与缺血性疾病血管生成的机制[J]. 吉林医药学院学报, 2017, 38(4): 291-295.
[9] Hong, H. and Liu, G.Q. (2006) Scutellarin Protects PC12 Cells from Oxidative Stress-Induced Apoptosis. Journal of Asian Natural Products Research, 8, 471-479.
https://doi.org/10.1080/10286020412331286470a
[10] Pan, Z.W., Zhang, Y., Mei, D.H., et al. (2010) Scutellarin Exerts Its Anti-Hypertrophic Effects via Suppressing the Ca2+-Mediated Calcineurin and CaMKII Signaling Pathways. Naunyn-Schmiedeberg’s Archives of Pharmacology, 381, 137-145.
https://doi.org/10.1007/s00210-009-0484-y
[11] Wang, S., Wang, H., Guo, H., et al. (2011) Neuroprotection of Scutellarin Is Mediated by Inhibition of Microglial Inflammatory Activation. Neuroscience, 185, 150-160.
https://doi.org/10.1016/j.neuroscience.2011.04.005
[12] Pan, Z., Zhao, W., Zhang, X., et al. (2011) Scutellarin Alleviates Interstitial Fibrosis and Cardiac Dysfunction of Infarct Rats by Inhibiting TGFβ1 Expression and Activation of p38-MAPK and ERK1/2. British Journal of Pharmacology, 162, 688-700.
https://doi.org/10.1111/j.1476-5381.2010.01070.x
[13] Wong, R.S. (2011) Apoptosis in Cancer: From Pathogenesis to Treatment. Journal of Experimental & Clinical Cancer Research, 30, 87.
https://doi.org/10.1186/1756-9966-30-87
[14] Knight, T., Luedtke, D., Edwards, H., et al. (2019) A Delicate Balance—The BCL-2 Family and Its Role in Apoptosis, Oncogenesis, and Cancer Therapeutics. Biochemical Pharmacology, 162, 250-261.
https://doi.org/10.1016/j.bcp.2019.01.015
[15] 吕鹏, 宁明杰, 邵玉, 等. 野黄芩苷对人脑胶质瘤U87细胞的增殖抑制作用及其机制[J]. 吉林大学学报(医学版), 2018, 44(3): 466-470.
[16] Gao, C., Zhou, Y., Jiang, Z., et al. (2017) Cytotoxic and Chemosensitization Effects of Scutellarin from Traditional Chinese Herb Scutellaria altissima L. in Human Prostate Cancer Cells. Oncology Reports, 38, 1491-1499.
https://doi.org/10.3892/or.2017.5850
[17] Xu, H. and Zhang, S. (2013) Scutellarin-Induced Apoptosis in HepG2 Hepatocellular Carcinoma Cells via a STAT3 Pathway. Phytotherapy Research, 27, 1524-1528.
https://doi.org/10.1002/ptr.4892
[18] Yuan, J., Yan, R., Krämer, A., et al. (2004) Cyclin B1 Depletion Inhibits Proliferation and Induces Apoptosis in Human Tumor Cells. Oncogene, 23, 5843-5852.
https://doi.org/10.1038/sj.onc.1207757
[19] Deng, W., Han, W., Fan, T., et al. (2018) Scutellarin Inhibits Human Renal Cancer Cell Proliferation and Migration via Upregulation of PTEN. Biomedicine & Pharmacotherapy, 107, 1505-1513.
https://doi.org/10.1016/j.biopha.2018.08.127
[20] Feng, Y., Zhang, S., Tu, J., et al. (2012) Novel Function of Scutellarin in Inhibiting Cell Proliferation and Inducing Cell Apoptosis of Human Burkitt Lymphoma Namalwa Cells. Leukemia & Lymphoma, 53, 2456-2464.
https://doi.org/10.3109/10428194.2012.693177
[21] 熊思会. 基于Hedgehog信号通路的野黄芩苷抑制HT-29细胞源性结肠肿瘤干细胞分化的研究[D]: [硕士学位论文]. 成都: 成都中医药大学, 2018.
[22] Shi, X., Chen, G., Liu, X., et al. (2015) Scutellarein Inhibits Cancer Cell Metastasis in Vitro and Attenuates the Development of Fibrosarcoma in Vivo. International Journal of Molecular Medicine, 35, 31-38.
https://doi.org/10.3892/ijmm.2014.1997
[23] Li, H., Huang, D., Gao, Z., et al. (2010) Scutellarin Inhibits Cell Migration by Regulating Production of αvβ6 Integrin and E-Cadherin in Human Tongue Cancer Cells. Oncology Reports, 24, 1153-1160.
https://doi.org/10.3892/or_00000967
[24] Ke, Y., Bao, T., Wu, X., et al. (2017) Scutellarin Suppresses Migration and Invasion of Human Hepatocellular Carcinoma by Inhibiting the STAT3/Girdin/Akt Activity. Biochemical and Biophysical Research Communications, 483, 509-515.
https://doi.org/10.1016/j.bbrc.2016.12.114
[25] Liu, K., Tian, T., Zheng, Y., et al. (2019) Scutellarin Inhibits Proliferation and Invasion of Hepatocellular Carcinoma Cells via Down-Regulation of JAK2/STAT3 Pathway. Journal of Cellular and Molecular Medicine, 23, 3040-3044.
https://doi.org/10.1111/jcmm.14169
[26] Li, C.Y., Wang, Q., Wang, X., et al. (2019) Scutellarin Inhibits the Invasive Potential of Malignant Melanoma Cells through the Suppression Epithelial-Mesenchymal Transition and Angiogenesis via the PI3K/Akt/mTOR Signaling Pathway. European Journal of Pharmacology, 858, Article ID: 172463.
https://doi.org/10.1016/j.ejphar.2019.172463
[27] 郑小丽, 汪佳琪, 余露山, 等. 基于药物代谢酶和转运体表观遗传学逆转肿瘤耐药的研究进展[J]. 医学新知, 2020, 30(6): 457-463.
[28] 吴恩慧, 王琪瑞, 来梦茹, 等. 复方苦参注射液在肺癌联合治疗中的应用与机制研究进展[J]. 中国民族民间医药, 2020, 29(20): 59-63.
[29] Alotaibi, M.R., Asnake, B., Di, X., et al. (2013) Stilbene 5c, a Microtubule Poison with Vascular Disrupting Properties That Induces Multiple Modes of Growth Arrest and Cell Death. Biochemical Pharmacology, 86, 1688-1698.
https://doi.org/10.1016/j.bcp.2013.10.007
[30] Xie, Z., Guo, Z., Lei, J., et al. (2019) Scutellarin Synergistically Enhances Cisplatin Effect against Ovarian Cancer Cells through Enhancing the Ability of Cisplatin Binding to DNA. European Journal of Pharmacology, 844, 9-16.
https://doi.org/10.1016/j.ejphar.2018.11.040
[31] Nie, J., Yang, H.M., Sun, C.Y., et al. (2018) Scutellarin En-hances Antitumor Effects and Attenuates the Toxicity of Bleomycin in H22 Ascites Tumor-Bearing Mice. Frontiers in Pharmacology, 9, 615.
https://doi.org/10.3389/fphar.2018.00615
[32] Sun, C., Li, C., Li, X., et al. (2018) Scutellarin Induces Apoptosis and Autophagy in NSCLC Cells through ERK1/2 and AKT Signaling Pathways In Vitro and In Vivo. Journal of Cancer, 9, 3247-3256.
https://doi.org/10.7150/jca.25921