|
[1]
|
Takemura, M., Niimi, A., Matsumoto, H., et al. (2017) Imbalance of Endogenous Prostanoids in Moderate-to-Severe Asthma. Allergology International, 66, 83-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Gandhi, N.A., Gandhi, N.A., Bennett, B.L., et al. (2016) Targeting Key Proximal Drivers of Type 2 Inflammation in Disease. Nature Reviews Drug Discovery, 15, 35-50. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Andrea, M., et al. (2020) The Emerging Role of Type 2 Inflammation in Asthma. Expert Review of Clinical Immunology, 1-9. [Google Scholar] [CrossRef]
|
|
[4]
|
Kytikova, O., Novgorodtseva, T., Denisenko, Y., Antonyuk, M. and Gvozdenko, T. (2019) Pro-Resolving Lipid Mediators in the Pathophysiology of Asthma. Medicina (Kaunas), 55, 284. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Sokolowska, M., Rovati, G.E., Diamant, Z., et al. (2020) Current Perspective on Eicosanoids in Asthma and Allergic Diseases—EAACI Task Force Consensus Report, Part I. Allergy, 76, 114-130.
|
|
[6]
|
Dogné, J.M., de Leval, X., Benoit, P., Delarge, J. and Masereel, B. (2002) Thromboxane A2 Inhibition: Therapeutic Potential in Bronchial Asthma. American Journal of Respiratory Medicine, 1, 11-17. [Google Scholar] [CrossRef]
|
|
[7]
|
Fontana, P., Zufferey, A., Daali, Y. and Reny, J.L. (2014) Antiplatelet Therapy: Targeting the TxA2 Pathway. Journal of Cardiovascular Translational Research, 7, 29-38. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Ekambaram, P., Lambiv, W., Cazzolli, R., Ashton, A.W. and Honn, K.V. (2011) The Thromboxane Synthase and Receptor Signaling Pathway in Cancer: An Emerging Paradigm in Cancer Progression and Metastasis. Cancer and Metastasis Reviews, 30, 397-408. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Endo, S. and Akiyama, K. (1996) Thromboxane A2 Receptor Antagonist in Asthma Therapy. Nihon Rinsho, 54, 3045-3048.
|
|
[10]
|
Idzko, M., Pitchford, S. and Page, C. (2015) Role of Platelets in Allergic Airway Inflammation. The Journal of Allergy and Clinical Immunology, 135, 1416-1423. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Nakahata, N. (2008) Thromboxane A2: Physiology/Pathophysiology, Cellular Signal Transduction and Pharmacology. Pharmacology & Therapeutics, 118, 18-35. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Rucker, D. and Dhamoon, A.S. (2020) Physiology, Thromboxane A2. StatPearls Publishing, Treasure Island.
|
|
[13]
|
Ruan, K.H. (2004) Advance in Understanding the Biosynthesis of Prostacyclin and Thromboxane A2 in the Endoplasmic Reticulum Membrane via the Cyclooxygenase Pathway. Mini-Reviews in Medicinal Chemistry, 4, 639-647. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Tamada, T. and Ichinose, M. (2017) Leukotriene Receptor Antagonists and Antiallergy Drugs. In: Handbook of Experimental Pharmacology, Springer, Berlin, Vol. 237, 153-169. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Nusing, R., Lesch, R. and Ullrich, V. (1990) Immunohistochemical Localization of Thromboxane Synthase in Human Tissues. Eicosanoids, 3, 53-58.
|
|
[16]
|
Widdicombe, J.H., Ueki, I.F., Emery, D., Margolskee, D., Yergey, J. and Nadel, J.A. (1989) Release of Cyclooxygenase Products from Primary Cultures of Tracheal Epithelia of Dog and Human. American Journal of Physiology, 257, L361-L365. [Google Scholar] [CrossRef]
|
|
[17]
|
Rolin, S., Masereel, B. and Dogne, J. (2006) Prostanoids as Pharmacological Targets in COPD and Asthma. European Journal of Pharmacology, 533, 89-100. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Betz, M. and Fox, B.S. (1991) Prostaglandin E2 Inhibits Production of Th1 Lymphokines But Not of Th2 Lymphokines. Journal of Immunology, 146, 108-113.
|
|
[19]
|
Hernandez, J.M. and Janssen, L.J. (2015) Revisiting the Usefulness of Thromboxane-A2 Modulation in the Treatment of Bronchoconstriction in Asthma. Canadian Journal of Physiology and Pharmacology, 93, 111-117. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Yu, L., Liu, Q. and Canning, B.J. (2018) Evidence for Autocrine and Paracrine Regulation of Allergen-Induced Mast Cell Mediator Release in the Guinea Pig Airways. European Journal of Pharmacology, 822, 108-118. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Pan, Y., Li, S., Xie, X. and Li, M. (2016) Association between Thromboxane A2 Receptor Polymorphisms and Asthma Risk: A Meta-Analysis. Journal of Asthma, 53, 576-582. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Kapoor, Y. and Kumar, K. (2020) Structural and Clinical Impact of Anti-Allergy Agents: An Overview. Bioorganic Chemistry, 94, Article ID: 103351. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
傅毅, 卢钟娇, 陈生弟. 血栓素A2受体及基因多态性在脑血管疾病中的研究进展[J]. 中华临床医师杂志(电子版), 2013, 7(7): 3134-3136.
|
|
[24]
|
Fan, H., Chen, S., Yuan, X., et al. (2019) Structural Basis for Ligand Recognition of the Human Thromboxane A2 Receptor. Nature Chemical Biology, 15, 27-33. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Claar, D., Hartert, T.V. and Peebles, R.S. (2015) The Role of Prostaglandins in Allergic Lung Inflammation and Asthma. Expert Review of Respiratory Medicine, 9, 55-72. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Hirata, T., Ushikubi, F., Kakizuka, A., Okuma, M. and Narumiya, S. (1996) Two Thromboxane A2 Receptor Isoforms in Human Platelets. Opposite Coupling to Adenylyl Cyclase with Different Sensitivity to Arg60 to Leu Mutation. Journal of Clinical Investigation, 97, 949-956. [Google Scholar] [CrossRef]
|
|
[27]
|
王雪艳, 张宏艳, 刘长山, 韩忠. 血栓素A_2受体基因多态性与哮喘遗传易感性的相关研究[J]. 天津医药, 2010, 38(8): 667-669.
|
|
[28]
|
黄加忠, 李靖, 金跃, 周黎阳. 血栓素A_2受体基因多态性与哮喘相关性研究[J]. 山东医药, 2012, 52(16): 62-63.
|
|
[29]
|
Davies, A.M., et al. (2017) Allosteric Mechanism of Action of the Therapeutic Anti-IgE Antibody Omalizumab. Journal of Biological Chemistry, 292, 9975. [Google Scholar] [CrossRef]
|
|
[30]
|
Feletou, M., Huang, Y. and Vanhoutte, P.M. (2011) Endothelium-Mediated Control of Vascular Tone: COX-1 and COX-2 Products. British Journal of Pharmacology, 164, 894-912. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Feletou, M., Huang, Y. and Vanhoutte, P.M. (2010) Vasoconstrictor Prostanoids. Pflügers Archiv, 459, 941-950. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Chen, H. (2018) Role of Thromboxane A2 Signaling in Endothelium-Dependent Contractions of Arteries. Prostaglandins & Other Lipid Mediators, 134, 32-37. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Bayat, H., Xu, S., Pimentel, D., Cohen, R.A. and Jiang, B. (2008) Activation of Thromboxane Receptor Upregulates Interleukin (IL)-1Beta-Induced VCAM-1 Expression through JNK Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 127-134. [Google Scholar] [CrossRef]
|
|
[34]
|
Lei, Y., Cao, Y., Zhang, Y., Edvinsson, L. and Xu, C.B. (2011) Enhanced Airway Smooth Muscle Cell Thromboxane Receptor Signaling via Activation of JNK MAPK and Extracellular Calcium Influx. European Journal of Pharmacology, 650, 629-638. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Cyphert, J.M., Allen, I.C., Church, R.J., et al. (2012) Allergic Inflammation Induces a Persistent Mechanistic Switch in Thromboxane-Mediated Airway Constriction in the Mouse. American Journal of Physiology Lung Cellular and Molecular Physiology, 302, L140-L151. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Saito, M., Fujimura, M., Sakamoto, S., Miyake, Y., Shintani, H., Yasui, M. and Matsuda, T. (1992) Involvement of Arachidonate Cyclooxygenase Products in Bronchial Hyperresponsiveness Induced by Subthreshold Concentration of Aerosolized Thromboxane A2 Analogue (STA2) in Guinea Pigs. Allergy, 47, 181. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Fujimura, M., Sakamoto, S., Saito, M., Miyake, Y. and Matsuda, T. (1991) Effect of a Thromboxane A2 Receptor Antagonist (AA-2414) on Bronchial Hyperresponsiveness to Methacholine in Subjects with Asthma. The Journal of Allergy and Clinical Immunology, 87, 23. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Hayashi, M., Koya, T., Kawakami, H., et al. (2010) A Prostacyclin Agonist with Thromboxane Inhibitory Activity for Airway Allergic Inflammation in Mice. Clinical & Experimental Allergy, 40, 317-326. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Shi, H., Yokoyama, A., Kohno, N., et al. (1998) Effect of Thromboxane A2 Inhibitors on Allergic Pulmonary Inflammation in Mice. European Respiratory Journal, 11, 624-629.
|
|
[40]
|
苗润宏. 哮喘患者血浆血栓素A_2和降钙素基因相关肽水平的变化及临床意义[J]. 中国实用医药, 2008(12): 53-54.
|
|
[41]
|
Hernandez, J.M. and Janssen, L.J. (2011) Thromboxane Prostanoid Receptor Activation Amplifies Airway Stretch-Activated Contractions Assessed in Perfused Intact Bovine Bronchial Segments. Journal of Pharmacology and Experimental Therapeutics, 339, 248-256. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Liu, T., Garofalo, D., Feng, C., et al. (2015) Platelet-Driven Leukotriene C4-Mediated Airway Inflammation in Mice Is Aspirin-Sensitive and Depends on T Prostanoid Receptors. Journal of Immunology, 194, 5061-5068. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Kontogiorgis, C. and Hadjipavlou-Litina, D. (2010) Thromboxane Synthase Inhibitors and Thromboxane A2 Receptor Antagonists: A Quantitative Structure Activity Relationships (QSARs) Analysis. Current Medicinal Chemistry, 17, 3162-3214. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Hoshino, M., Sim, J., Shimizu, K., Nakayama, H. and Koya, A. (1999) Effect of AA-2414, a Thromboxane A2 Receptor Antagonist, on Airway Inflammation in Subjects with Asthma. Journal of Allergy and Clinical Immunology, 103, 1054-1061. [Google Scholar] [CrossRef]
|
|
[45]
|
An, J., Li, J.Q., Wang, T., et al. (2013) Blocking of Thromboxane A2 Receptor Attenuates Airway Mucus Hyperproduction Induced by Cigarette Smoke. European Journal of Pharmacology, 703, 11-17. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Li, Y., Shi, H. 血栓素A_2合成酶抑制剂OKY-046对抗原引起气道嗜酸性粒细胞浸润的影响[J]. 广西医科大学学报, 1998(3): 3-5.
|
|
[47]
|
刘秀杰, 方林, 程卯生. TXA_2合成酶抑制剂和TXA_2受体拮抗剂的研究进展[J]. 药学进展, 2002(3): 143-146.
|
|
[48]
|
Kwah, J.H. and Peters, A.T. (2019) Asthma in Adults: Principles of Treatment. Allergy & Asthma Proceedings, 40, 396-402. [Google Scholar] [CrossRef] [PubMed]
|