|
[1]
|
Gordon, B.B. (2008) Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science, 320, 1444-1449. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
鲁显楷, 莫江明, 张炜, 等. 模拟大气氮沉降对中国森林生态系统影响的研究进展[J]. 热带亚热带植物学报, 2019, 27(5): 500-522.
|
|
[3]
|
Pregitzer, K.S., Burton, A.J., Zak, D.R. and Talhelm, A.F. (2008) Simulated Chronic Nitrogen Deposition Increases Carbon Storage in Northern Temperate Forests. Global Change Biology, 14, 142-153. [Google Scholar] [CrossRef]
|
|
[4]
|
Brookshire, E.N.J., Valett, H.M., Thomas, S.A. and Web-ster, J.R. (2007) Atmospheric N Deposition Increases Organic N Loss from Temperate Forests. Ecosystems, 10, 252-262. [Google Scholar] [CrossRef]
|
|
[5]
|
Aber, J., McDowell, W., et al. (1998) Nitrogen Saturation in Temperate Forest Ecosystems. BioScience, 48, 921-934. [Google Scholar] [CrossRef]
|
|
[6]
|
Nadelhoffer, K.J. (2000) Research Review: The Potential Effects of Nitrogen Deposition on Fine-Root Production in Forest Ecosystems. New Phytologist, 147, 131-139. [Google Scholar] [CrossRef]
|
|
[7]
|
Joseph, J., et al. (1993) Assessing the Role of Fine Roots in Carbon and Nutrient Cycling. Trends in Ecology & Evolution, 8, 174-178. [Google Scholar] [CrossRef]
|
|
[8]
|
Matamala, R., et al. (2003) Impacts of Fine Root Turnover on Forest NPP and Soil C Sequestration Potential. Science, 302, 1385-1387. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Liu, L.L. and Greaver, T.L. (2010) A Global Perspective on Be-lowground Carbon Dynamics under Nitrogen Enrichment. Ecology Letters, 13, 819-828. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Luke, M.M., et al. (2015) Redefining Fine Roots Improves Understanding of Below-Ground Contributions to Terrestrial Biosphere Processes. The New Phytologist, 207, 505-518. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Nadelhoffer, K.J., Aber, J.D. and Melillo, J.M. (1985) Fine Roots, Net Primary Production, and Soil Nitrogen Availability: A New Hypothesis. Ecology, 66, 1377-1390. [Google Scholar] [CrossRef]
|
|
[12]
|
Robinson, D. (2012) Measuring Roots: An Updated Approach. Experimental Agriculture, 48, 466-467. [Google Scholar] [CrossRef]
|
|
[13]
|
Jackson, R.B., Mooney, H.A. and Schulze, E.D. (1997) A Global Budget for Fine Root Biomass, Surface Area, and Nutrient Contents. Proceedings of the National Academy of Sciences of the United States of America, 94, 7362-7366. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Helmisaari, H.S., Ostonen, I., Lhmus, K., Derome, J. and Njd, P. (2009) Ectomycorrhizal Root Tips in Relation to Site and Stand Characteristics in Norway Spruce and Scots Pine Stands in Boreal Forests. Tree Physiology, 29, 445-456. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Vogt, K.A., Vogt, D.J., Palmiotto, P.A., Boon, P., O’Hara, J. and Asbjornsen, H. (1996) Review of Root Dynamics in Forest Ecosystems Grouped by Climate, Climatic Forest Type and Species. Plant & Soil, 187, 159-219. [Google Scholar] [CrossRef]
|
|
[16]
|
Deng, L., Peng, C., Zhu, G., et al. (2017) Positive Responses of Be-lowground C Dynamics to Nitrogen Enrichment in China. Science of the Total Environment, 616-617, 1035-1044. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lu, M., Yang, Y., Luo, Y., Fang, C. and Li, B. (2011) Re-sponses of Ecosystem Nitrogen Cycle to Nitrogen Addition: A Meta-Analysis. New Phytologist, 189, 1040-1050. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
郭大立, 范萍萍. 关于氮有效性影响细根生产量和周转率的四个假说[J]. 应用生态学报, 2007(10): 2354-2360.
|
|
[19]
|
Wang, C., Han, S., Zhou, Y., Yan, C., Cheng, X., Zheng, X., et al. (2012) Responses of Fine Roots and Soil N Availability to Short-Term Nitrogen Fertilization in a Broad-Leaved Korean Pine Mixed Forest in Northeastern China. PLoS ONE, 7, e31042. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Kou, L., et al. (2018) Nitrogen Deposition Increases Root Production and Turnover but Slows Root Decomposition in Pinus elliottii Plantations. New Phytologist, 218, 1450-1461. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Xia, M., Guo, D. and Pregitzer, K.S. (2010) Ephemeral Root Modules in Fraxinus mandshurica. New Phytologist, 188, 1065-1074. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Burton, A.J., Pregitzer, K.S. and Hendrick, R.L. (2000) Relationships between Fine Root Dynamics and Nitrogen Availability in Michigan Northern Hardwood Forests. Oecologia, 125, 389-399. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Yan, G., Chen, F., Zhang, X., Wang, J., Han, S., Xing, Y., et al. (2017) Spatial and Temporal Effects of Nitrogen Addition on Root Morphology and Growth in a Boreal Forest. Geoderma, 303, 178-187. [Google Scholar] [CrossRef]
|
|
[24]
|
Eissenstat, D.M. (1997) The Ecology of Root Lifespan. Advances in Ecological Research, 27, 1-60. [Google Scholar] [CrossRef]
|
|
[25]
|
Ostertag, R. (2001) Effects of Nitrogen and Phosphorus Availability on Fine-Root Dynamics in Hawaiian Montane Forests. Ecology, 82, 485-499. [Google Scholar] [CrossRef]
|
|
[26]
|
Li, W., Jin, C., Guan, D., Wang, Q., Wang, A., Yuan, F., et al. (2015) The Effects of Simulated Nitrogen Deposition on Plant Root Traits: A Meta-Analysis. Soil Biology & Biochemistry, 82, 112-118. [Google Scholar] [CrossRef]
|
|
[27]
|
Mei, L., Gu, J., Zhang, Z. and Wang, Z. (2017) Responses of Fine Root Mass, Length, Production and Turnover to Soil Nitrogen Fertilization in Larix gmelinii and Fraxinus mandshurica Forests in Northeastern China. Journal of Forest Research, 15, 194-201. [Google Scholar] [CrossRef]
|
|
[28]
|
Jourdan, C., Silva, E.V., Gonalves, J.L.M., Ranger, J., Moreira, R.M. and Laclau, J.P. (2008) Fine Root Production and Turnover in Brazilian Eucalyptus Plantations under Contrasting Nitrogen Fertilization Regimes. Forest Ecology & Management, 256, 396-404. [Google Scholar] [CrossRef]
|
|
[29]
|
Guo, D.L., et al. (2007) Fine Root Heterogeneity by Branch Order: Exploring the Discrepancy in Root Turnover Estimates between Minirhizotron and Carbon Isotopic Methods. New Phytologist, 177, 443-456. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Jackson, N.R.B. (2000) Research Review: Root Dynamics and Global Change: Seeking an Ecosystem Perspective. New Phytologist, 147, 3-12. [Google Scholar] [CrossRef]
|
|
[31]
|
Yuan, Z.Y. and Chen, H.Y.H. (2012) A Global Analysis of Fine Root Production as Affected by Soil Nitrogen and Phosphorus. Proceedings of the Royal Society B: Biological Sciences, 279, 3796-3802. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Hendricks, J.J., Aber, J.D. and Hallett, N.R.D. (2000) Nitrogen Con-trols on Fine Root Substrate Quality in Temperate Forest Ecosystems. Ecosystems, 3, 57-69. [Google Scholar] [CrossRef]
|
|
[33]
|
Lebauer, D.S. and Treseder, K.K. (2008) Nitrogen Limitation of Net Primary Productivity in Terrestrial Ecosystems Is Globally Distributed. Ecology, 89, 371-379. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Elser, J.J., Bracken, M.E.S., Cleland, E.E., Gruner, D.S., Harpole, W.S., Hillebrand, H., et al. (2007) Global Analysis of Nitrogen and Phosphorus Limitation of Primary Producers in Freshwater, Marine and Terrestrial Ecosystems. Ecology Letters, 10, 1135-1142. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Peng, Y., Guo, D. and Yang, Y. (2017) Global Patterns of Root Dynamics under Nitrogen Enrichment. Global Ecology & Biogeography, 26, 102-114. [Google Scholar] [CrossRef]
|
|
[36]
|
Hendricks, J.J., Hendrick, R.L., Wilson, C.A., Mitchell, R.J., Pecot, S.D. and Guo, D. (2010) Assessing the Patterns and Controls of Fine Root Dynamics: An Empirical Test and Methodological Review. Journal of Ecology, 94, 40-57. [Google Scholar] [CrossRef]
|
|
[37]
|
Majdi, K. (1997) Demography of Fine Roots in Response to Nutrient Applications in a Norway Spruce Stand in Southwestern Sweden. Écoscience, 4, 199-205. [Google Scholar] [CrossRef]
|
|
[38]
|
Andersson, H.M. (2005) Fine Root Production and Turnover in a Norway Spruce Stand in Northern Sweden: Effects of Nitrogen and Water Manipulation. Ecosystems, 8, 191-199. [Google Scholar] [CrossRef]
|
|
[39]
|
Adams, T.S., Luke, M.C.M. and Eissenstat, D.M. (2013) Foraging Strategies in Trees of Different Root Morphology: The Role of Root Lifespan. Tree Physiology, 9, 940-948. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Weemstra, M., Kiorapostolou, N., Ruijven, J.V., Mommer, L. and Sterck, F. (2020) The Role of Fine-Root Mass, Specific Root Length and Life Span in Tree Performance: A Whole-Tree Exploration. Functional Ecology, 34, 575-585. [Google Scholar] [CrossRef]
|
|
[41]
|
于水强, 王政权, 史建伟, 等. 氮肥对水曲柳和落叶松细根寿命的影响[J]. 应用生态学报, 2009, 20(10): 2332-2338.
|
|
[42]
|
陈冠陶, 彭勇, 郑军, 等. 氮添加对亚热带次生常绿阔叶林扁刺栲细根生物量、寿命和形态的短期影响[J]. 植物生态学报, 2017, 41(10): 1041-1050.
|
|
[43]
|
Chen, H.Y.H. and Brassard, B.W. (2013) Intrinsic and Extrinsic Controls of Fine Root Life Span. Critical Reviews in Plant Sciences, 32, 151-161. [Google Scholar] [CrossRef]
|
|
[44]
|
Luke, M., et al. (2012) Predicting Fine Root Lifespan from Plant Functional Traits in Temperate Trees. New Phytologist, 195, 823-831. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Mccormack, M.L. and Guo, D. (2014) Impacts of Environmental Factors on Fine Root Lifespan. Frontiers in Plant Science, 5, 205. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Hishi, T. (2007) Heterogeneity of Individual Roots within the Fine Root Architecture: Causal Links between Physiological and Ecosystem Functions. Journal of Forest Research, 12, 126-133. [Google Scholar] [CrossRef]
|
|
[47]
|
Kramer-Walter, K.R., Bellingham, P.J., Millar, T.R., Smissen, R.D., Richardson, S.J. and Laughlin, D.C. (2016) Root Traits Are Multidimensional: Specific Root Length Is Independent from Root Tissue Density and the Plant Economic Spectrum. Journal of Ecology, 104, 1299-1310. [Google Scholar] [CrossRef]
|
|
[48]
|
Poorter, H. and Ryser, P. (2015) The Limits to Leaf and Root Plasticity: What Is So Special about Specific Root Length? New Phytologist, 206, 1188-1190. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Ostonen, I., Puttsepp, U., Blec, C., et al. (2007) Specific Root Length as an Indicator of Environmental Change. Plant Biosystems—An International Journal Dealing with All Aspects of Plant Biology, 141, 426-442. [Google Scholar] [CrossRef]
|
|
[50]
|
Fitter, A.H. (1982) Morphometric Analysis of Root Systems: Application of the Technique and Influence of Soil Fertility on Root System Development in Two Herbaceous Species. Plant, Cell & Environment, 5, 313-322. [Google Scholar] [CrossRef]
|
|
[51]
|
Eissenstat, D.M. (1992) Costs and Benefits of Constructing Roots of Small Diameter. Journal of Plant Nutrition, 15, 763-782. [Google Scholar] [CrossRef]
|
|
[52]
|
Robinson, D., Hodge, A. and Fitter, A. (2003) Constraints on the Form and Function of Root Systems. In: Root Ecology, Springer, Berlin, 1-31. [Google Scholar] [CrossRef]
|
|
[53]
|
Ivika, O., et al. (2007) Fine Root Morphological Adaptations in Scots Pine, Norway Spruce and Silver Birch along a Latitudinal Gradient in Boreal Forests. Tree Physiology, 27, 1627-1634. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Chen, G.T., Tu, L.-H., Peng, Y., et al. (2017) Effect of Nitrogen Additions on Root Morphology and Chemistry in a Subtropical Bamboo Forest. Plant & Soil, 412, 441-451. [Google Scholar] [CrossRef]
|
|
[55]
|
Chapin, J.B.A., Stuart, F., et al. (1985) Resource Limitation in Plants—An Economic Analogy. Annual Review of Ecology and Systematics, 16, 363-392. [Google Scholar] [CrossRef]
|
|
[56]
|
Hodge, A. (2006) Plastic Plants and Patchy Soils. Journal of Experimental Botany, 57, 401-411. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Mao, Q.G., et al. (2017) Effects of Long-Term Nitrogen and Phosphorus Additions on Soil Acidification in an n-Rich Tropical Forest. Geoderma, 285, 57-63. [Google Scholar] [CrossRef]
|
|
[58]
|
Hirano, Y., Isomura, A. and Kaneko, S. (2003) Root Morphology and Nutritional Status of Japanese Red Cedar Saplings Subjected to in Situ Levels of Aluminum in Forest Soil Solution. Journal of Forest Research, 8, 209-214. [Google Scholar] [CrossRef]
|
|
[59]
|
Jia, S.X., McLaughlin, N.B., et al. (2013) Relationships between Root Respiration Rate and Root Morphology, Chemistry and Anatomy in Larix gmelinii and Fraxinus mandshurica. Tree Physiology, 33, 579-589. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
贾林巧, 陈光水, 张礼宏, 等. 罗浮栲和米槠细根形态功能性状对短期氮添加的可塑性响应[J]. 应用生态学报, 2019, 30(12): 4003-4011.
|
|
[61]
|
Zhang, X., Xing, Y., Wang, Q., et al. (2020) Effects of Long-Term Nitrogen Addition and Decreased Precipitation on the Fine Root Morphology and Anatomy of the Main Tree Species in a Temperate Forest. Forest Ecology and Management, 455, Article ID: 117664. [Google Scholar] [CrossRef]
|
|
[62]
|
Kou, L., Guo, D., Yang, H., et al. (2015) Growth, Morphological Traits and Mycorrhizal Colonization of Fine Roots Respond Differently to Nitrogen Addition in a Slash Pine Plantation in Subtropical China. Plant and Soil, 391, 207-218. [Google Scholar] [CrossRef]
|
|
[63]
|
Tobner, C.M., Paquette, A. and Messier, C. (2013) Interspecific Coordination and Intraspecific Plasticity of Fine Root Traits in North American Temperate Tree Species. Frontiers in Plant Science, 4, 242. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Kong, D., Ma, C., Zhang, Q., Li, L., Chen, X., Zeng, H., et al. (2014) Leading Dimensions in Absorptive Root Trait Variation across 96 Subtropical Forest Species. New Phytologist, 203, 863-872. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Gu, J., Xu, Y., Dong, X., Wang, H. and Wang, Z. (2014) Root Diameter Variations Explained by Anatomy and Phylogeny of 50 Tropical and Temperate Tree Species. Tree Physiology, 34, 415-425. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Zobel, R.W., Kinraide, T.B. and Baligar, V.C. (2007) Fine Root Diameters Can Change in Response to Changes in Nutrient Concentrations. Plant and Soil, 297, 243-254. [Google Scholar] [CrossRef]
|
|
[67]
|
Krasowski, M.J. and Owens, J.N. (1999) Tracheids in White Spruce Seedling’s Long Lateral Roots in Response to Nitrogen Availability. Plant and Soil, 217, 215-228.
|
|
[68]
|
Wang, G., Liu, F. and Xue, S. (2017) Nitrogen Addition Enhanced Water Uptake by Affecting Fine Root Morphology and Coarse Root Anatomy of Chinese Pine Seedlings. Plant and Soil, 418, 177-189. [Google Scholar] [CrossRef]
|
|
[69]
|
Pregitzer, K.S., Deforest, J.L., Burton, A.J., et al. (2002) Fine Root Architecture of Nine North American Trees. Ecological Monographs, 72, 293-309. [Google Scholar] [CrossRef]
|
|
[70]
|
Wang, G., Fahey, T.J., Xue, S. and Liu, F. (2012) Root Morphology and Architecture Respond to N Addition in Pinus tabuliformis, West China. Oecologia, 171, 583-590. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Liu, Y., Li, P., Wang, G., Liu, G. and Li, Z. (2016) Above- and Below-Ground Biomass Distribution and Morphological Characteristics Respond to Nitrogen Addition in Pinus tabuliformis. New Zealand Journal of Forestry Science, 46, 25. [Google Scholar] [CrossRef]
|
|
[72]
|
Wang, W., Mo, Q., Han, X., Hui, D. and Shen, W. (2019) Fine Root Dynamics Responses to Nitrogen Addition Depend on Root Order, Soil Layer, and Experimental Duration in a Subtropical Forest. Biology and Fertility of Soils, 55, 723-736. [Google Scholar] [CrossRef]
|
|
[73]
|
Eissenstat, W.D.M. (2001) Marked Differences in Survivorship among Apple Roots of Different Diameters. Ecology, 82, 882-892. [Google Scholar] [CrossRef]
|
|
[74]
|
Yuan, Z.Y. and Chen, H.Y.H. (2010) Fine Root Biomass, Production, Turnover Rates, and Nutrient Contents in Boreal Forest Ecosystems in Relation to Species, Climate, Fertility, and Stand Age: Literature Review and Meta-Analyses. Critical Reviews in Plant Sciences, 29, 204-221. [Google Scholar] [CrossRef]
|
|
[75]
|
Li, Y., Niu, S. and Yu, G. (2016) Aggravated Phosphorus Limitation on Biomass Production under Increasing Nitrogen Loading: A Meta-Analysis. Global Change Biology, 22, 934-943. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
丁丽智, 邢亚娟, 闫国永, 等. 北方森林细根对大气N沉降增加和温度升高的响应[J]. 中国农学通报, 2020, 36(11): 63-73.
|
|
[77]
|
Finér, L., Ohashi, M., Noguchi, K. and Hirano, Y. (2011) Factors Causing Variation in Fine Root Biomass in Forest Ecosystems. Forest Ecology and Management, 261, 265-277. [Google Scholar] [CrossRef]
|
|
[78]
|
Zhou, Y., et al. (2011) Root Standing Crop and Chemistry after Six Years of Soil Warming in a Temperate Forest. Tree Physiology, 31, 707-717. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Mucha, J., Zadworny, M., Helmisaari, H.S., Nihlgrd, B. and Oleksyn, J. (2019) Fine Root Classification Matters: Nutrient Levels in Different Functional Categories, Orders and Diameters of Roots in Boreal Pinus sylvestris across a Latitudinal Gradient. Plant and Soil, 447, 507-520. [Google Scholar] [CrossRef]
|
|
[80]
|
Guo, D.L., Mitchell, R.J. and Hendricks, J.J. (2004) Fine Root Branch Orders Respond Differentially to Carbon Source-Sink Manipulations in a Longleaf Pine Forest. Oecologia, 140, 450-457. [Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Jia, S., et al. (2011) Effect of Nitrogen Fertilizer, Root Branch Order and Temperature on Respiration and Tissue N Concentration of Fine Roots in Larix gmelinii and Fraxinus mandshurica. Tree Physiology, 31, 718-726. [Google Scholar] [CrossRef] [PubMed]
|
|
[82]
|
Majdi, H., Pregitzer, K., Morén, A., et al. (2005) Measuring Fine Root Turnover in Forest Ecosystems. Plant & Soil, 276, 1-8. [Google Scholar] [CrossRef]
|
|
[83]
|
张小全, 吴可红, Dieter Murach. 树木细根生产与周转研究方法评述[J]. 生态学报, 2000(5): 875-883.
|
|
[84]
|
Ostonen, I., Helmisaari, H.S., Borken, W., Tedersoo, L., Kukum Gi, M., Bahram, M., et al. (2011) Fine Root Foraging Strategies in Norway Spruce Forests across a European Climate Gradient. Global Change Biology, 17, 3620-3632. [Google Scholar] [CrossRef]
|
|
[85]
|
Treseder, K.K. and Allen, M.F. (2000) Research Review: Mycorrhizal Fungi Have a Potential Role in Soil Carbon Storage under Elevated CO2 and Nitrogen Deposition. New Phytologist, 147, 189-200. [Google Scholar] [CrossRef]
|