|
[1]
|
Nie, S., He, W., Huang, T., et al. (2018) The Spectrum of Biopsy-Proven Glomerular Diseases among Children in China: A National, Cross-Sectional Survey. Clinical Journal of the American Society of Nephrolog, 13, 1047-1054. [Google Scholar] [CrossRef]
|
|
[2]
|
Reinhard, L., Stahl, R.A.K. and Hoxha, E. (2020) Is Primary Membranous Nephropathy a Complement Mediated Disease? Molecular Immunology, 128, 195-204. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Ravindran, A., Madden, B., Charlesworth, M.C., et al. (2020) Proteomic Analysis of Complement Proteins in Membranous Nephropathy. Kidney International Reports, 5, 618-626. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Oto, O.A., Demir, E., Mirioglu, S., et al. (2021) Clinical Significance of Glomerular C3 Deposition in Primary Membranous Nephropathy. Journal of Nephrology. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Hajishengallis, G., Reis, E.S., Mastellos, D.C., et al. (2017) Novel Mechanisms and Functions of Complement. Nature Immunology, 18, 1288-1298. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Arbore, G., Kemper, C. and Kolev, M. (2017) Intracellular Complement—The Complosome—In Immune Cell Regulation. Molecular Immunology, 89, 2-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Walport, M.J. (2001) Complement. First of Two Parts. The New England Journal of Medicine, 344, 1058-1066. [Google Scholar] [CrossRef]
|
|
[8]
|
Hajishengallis, G., Kajikawa, T., Hajishengallis, E., et al. (2019) Complement-Dependent Mechanisms and Interventions in Periodontal Disease. Frontiers in Immunology, 10, 406. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Menny, A., Serna, M., Boyd, C.M., et al. (2018) CryoEM Reveals How the Complement Membrane Attack Complex Ruptures Lipid Bilayers. Nature Communications, 9, 5316. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Hayashi, N., Okada, K., Matsui, Y., et al. (2018) Glomerular Mannose-Binding Lectin Deposition in Intrinsic Antigen-Related Membranous Nephropathy. Nephrology Dialysis Transplantation, 33, 832-840. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Heymann, W., Hackel, D.B., Harwood, S., et al. (2000) Production of Nephrotic Syndrome in Rats by Freund’s Adjuvants and Rat Kidney Suspensions. 1951. Journal of the American Society of Nephrology, 11, 183-188.
|
|
[12]
|
Akiyama, S., Imai, E. and Maruyama, S. (2019) Immunology of Membranous Nephropathy. F1000Research, 8, 734. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Ronco, P. and Debiec, H. (2017) A Podocyte View of Membranous Nephropathy: From Heymann Nephritis to the Childhood Human Disease. Pflügers Archiv, 469, 997-1005. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Couser, W.G. (2017) Primary Membranous Nephropathy. Clinical Journal of the American Society of Nephrology, 12, 983-997. [Google Scholar] [CrossRef]
|
|
[15]
|
Schiller, B., He, C., Salant, D.J., et al. (1998) Inhibition of Complement Regulation Is Key to the Pathogenesis of Active Heymann Nephritis. Journal of Experimental Medicine, 188, 1353-1358. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Salant, D.J. (2019) Unmet Challenges in Membranous Nephropathy. Current Opinion in Nephrology and Hypertension, 28, 70-76. [Google Scholar] [CrossRef]
|
|
[17]
|
Meyer-Schwesinger, C., Tomas, N.M., Dehde, S., et al. (2020) A Novel Mouse Model of Phospholipase A2 Receptor 1-Associated Membranous Nephropathy Mimics Podocyte Injury in Patients. Kidney International, 97, 913-919. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zhang, M.-F., Cui, Z., Zhang, Y.-M., et al. (2018) Clinical and Prognostic Significance of Glomerular C1q Deposits in Primary MN. Clinica Chimica Acta, 485, 152-157. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Sethi, S., Madden, B.J., Debiec, H., et al. (2019) Exostosin 1/Exostosin 2-Associated Membranous Nephropathy. Journal of the American Society of Nephrology, 30, 1123-1136. [Google Scholar] [CrossRef]
|
|
[20]
|
Vivarelli, M., Emma, F., Pellé, T., et al. (2015) Genetic Homogeneity but IgG Subclass-Dependent Clinical Variability of Alloimmune Membranous Nephropathy with Anti-Neutral Endopeptidase Antibodies. Kidney International, 87, 602-609. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Bally, S., Debiec, H., Ponard, D., et al. (2016) Phospholipase A2 Receptor-Related Membranous Nephropathy and Mannan-Binding Lectin Deficiency. Journal of the American Society of Nephrology, 27, 3539-3544. [Google Scholar] [CrossRef]
|
|
[22]
|
Zhang, M.-F., Huang, J., Zhang, Y.-M., et al. (2019) Complement Activation Products in the Circulation and Urine of Primary Membranous Nephropathy. BMC Nephrology, 20, 313. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Wiech, T., Stahl, R.A.K. and Hoxha, E. (2019) Diagnostic Role of Renal Biopsy in PLAR1-Antibody-Positive Patients with Nephrotic Syndrome. Modern Pathology, 32, 1320-1328. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Sinico, R.A., Mezzina, N., Trezzi, B., et al. (2016) Immunology of Membranous Nephropathy: From Animal Models to Humans. Clinical & Experimental Immunology, 183, 157-165. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Haddad, G., Lorenzen, J.M., Ma, H., et al. (2020) Altered Glycosylation of IgG4 Promotes Lectin Complement Pathway Activation in Anti-PLA2R1 Associated Membranous Nephropathy. Journal of Clinical Investigation. [Google Scholar] [CrossRef]
|
|
[26]
|
Luo, W., Olaru, F., Miner, J.H., et al. (2018) Alternative Pathway Is Essential for Glomerular Complement Activation and Proteinuria in a Mouse Model of Membranous Nephropathy. Frontiers in Immunology, 9, 1433. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Thurman, J.M. (2020) Complement and the Kidney: An Overview. Advances in Chronic Kidney Disease, 27, 86-94. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Mutti, M., Ramoni, K., Nagy, G., et al. (2018) A New Tool for Complement Research: Reconstituted Human Classical Complement Pathway. Frontiers in Immunology, 9, 2770. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Moll, S., Lange, S., Mihatsch, M.J., et al. (2006) CRIT Is Expressed on Podocytes in Normal Human Kidney and Upregulated in Membranous Nephropathy. Kidney International, 69, 1961-1968. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Angeletti, A., Cantarelli, C., Petrosyan, A., et al. (2020) Loss of Decay-Accelerating Factor Triggers Podocyte Injury and Glomerulosclerosis. Journal of Experimental Medicine, 217, e20191699. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Moll, S., Miot, S., Sadallah, S., et al. (2001) No Complement Receptor 1 Stumps on Podocytes in Human Glomerulopathies. Kidney International, 59, 160-168. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Seikrit, C., Ronco, P. and Debiec, H. (2018) Factor H Autoantibodies and Membranous Nephropathy. The New England Journal of Medicine, 379, 2479-2481. [Google Scholar] [CrossRef]
|
|
[33]
|
Lehto, T., Honkanen, E., Teppo, A.M., et al. (1995) Urinary Excretion of Protectin (CD59), Complement SC5b-9 and Cytokines in Membranous Glomerulonephritis. Kidney International, 47, 1403-1411. [Google Scholar] [CrossRef] [PubMed]
|