|
[1]
|
Thomas, R.Q., Canham, C.D., Weathers, K.C. and Goodale, G.L. (2010) Increased Tree Carbon Storage in Response to Nitrogen Deposition in the US. Nature Geoscience, 3, 13-17. [Google Scholar] [CrossRef]
|
|
[2]
|
梁亚宇, 李丽君, 刘平, 等. 大气氮沉降监测方法及中国不同地理分区氮沉降研究进展[J]. 山西农业科学, 2018, 46(10): 1751-1755.
|
|
[3]
|
吴玉凤, 高霄鹏, 桂东伟, 等. 大气氮沉降监测方法研究进展[J]. 应用生态学报, 2019, 30(10): 3605-3614.
|
|
[4]
|
杨正先, 于丽敏, 张志锋, 等. 渤海大气氮沉降通量初步研究[C]//2012年环境污染与大众健康学术会议. 美国科研出版社, 2012.
|
|
[5]
|
Payne, R.J., Camobell, C., Britton, A.J., et al. (2019) What Is the Most Eco-logically-Meaningful Metric of Nitrogen Deposition? Environmental Pollution, 247, 319-331. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Pan, Y.P., Wang, Y.S., Tang, G.Q. and Wu, D. (2012) Wet and Dry Deposition of Atmospheric Nitrogen at Ten Sites in Northern China. Atmospheric Chemistry and Physics, 12, 6515-6535. [Google Scholar] [CrossRef]
|
|
[7]
|
Peñuelas, J., Canadell, J.G. and Ogaya, R. (2011) In-creased Water-Use Efficiency during the 20th Century Did Not Translate into Enhanced Tree Growth. Global Ecology and Biogeography, 20, 597-608. [Google Scholar] [CrossRef]
|
|
[8]
|
Vanguelova, E.I. and Pitman, R.M. (2019) Nutrient and Carbon Cycling Along Nitrogen Deposition Gradients in Broadleaf and Conifer Forest Stands in the East of England. Forest Ecology and Management, 447, 180-194. [Google Scholar] [CrossRef]
|
|
[9]
|
Fenn, M.E., Baron, J.S., Allen, E.B., et al. (2003) Ecological Effects of Nitrogen Deposition in the Western United States. BioScience, 53, 404-420. [Google Scholar] [CrossRef]
|
|
[10]
|
Penuelas, J., Sardans, J., Rivas-ubach, A., et al. (2012) The Human-Induced Imbalance between C, N and P in Earth’s Life System. Global Change Biology, 18, 3-6. [Google Scholar] [CrossRef]
|
|
[11]
|
Janssans, I.A., Dieleman, W., Luyssaert, S., et al. (2010) Reduction of Forest Soil Respiration in Response to Nitrogen Deposition. Nature Geoscience, 3, 315-322. [Google Scholar] [CrossRef]
|
|
[12]
|
Gu, B., Ju, X., Chang, J., et al. (2015) Integrated Reactive Nitrogen Budgets and Future Trends in China. Proceedings of the National Academy of Sciences of the United States of America, 112, 8792-8797. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhao, Q., Guo, J., Shu, M., et al. (2020) Impacts of Drought and Nitrogen Enrichment on Leaf Nutrient Resorption and Root Nutrient Allocation in Four Tibetan Plant Species. Science of the Total Environment, 723, Article ID: 138106. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Jatleeahm, D.P., et al. (1998) Leaf Area and Above- and Belowground Growth Responses of Loblolly Pine to Nutrient and Water Additions. Forest Science, 44, 317-328.
|
|
[15]
|
鲁显楷, 莫江明, 张炜, 等. 模拟大气氮沉降对中国森林生态系统影响的研究进展[J]. 热带亚热带植物学报, 2019, 27(05): 500-522.
|
|
[16]
|
Tateno, R., Hishi, T. and Takeda, H. (2004) Above- and Belowground Biomass and Net Primary Production in a Cool-Temperate Deciduous Forest in Relation to Topographical Changes in Soil Nitrogen. Forest Ecology & Management, 193, 297-306. [Google Scholar] [CrossRef]
|
|
[17]
|
曲鹏. 增氮减水对早春草本植物碳、氮分配的影响[D]: [硕士学位论文]. 黑龙江: 黑龙江大学, 2018.
|
|
[18]
|
Rothstein, D.E. and Zak, D.R. (2010) Photosynthetic Adaptation and Acclimation to Exploit Seasonal Periods of Direct Irradiance in Three Temperate, Deciduous-Forest Herbs. Functional Ecology, 15, 722-731. [Google Scholar] [CrossRef]
|
|
[19]
|
Driscoll, C.., Whitall, D., Aber, J., et al. (2003) Nitrogen Pollution in the Northeastern United States: Sources, Effects, and Management Options. BioScience, 53, 357-374. [Google Scholar] [CrossRef]
|
|
[20]
|
Gastal, F. and Lemaire, G. (2002) N Uptake and Distribution in Crops: An Agronomical and Ecophysiological Perspective. Journal of Experimental Botany, 53, 789-799. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zhou, W., Cheng, X., Wu, R., et al. (2018) Effect of Intraspecific Competition on Biomass Partitioning of Larix principis-rupprechtii. Journal of Plant Interactions, 13, 1-8. [Google Scholar] [CrossRef]
|
|
[22]
|
Litton, C.M., Raich, J.W. and Ryan, M.G. (2007) Carbon Allocation in Forest Ecosystems. Global Change Biology, 13, 2089-2109. [Google Scholar] [CrossRef]
|
|
[23]
|
Meziane, B.S. (2010) The Balanced-Growth Hypothesis and the Allometry of Leaf and Root Biomass Allocation. Functional Ecology, 16, 326-331. [Google Scholar] [CrossRef]
|
|
[24]
|
Gower, S.T., Vogt, K.A. and Grier, C.C. (1992) Carbon Dynamics of Rocky Mountain Douglas-Fir: Influence of Water and Nutrient Availability. Ecological Monographs, 62, 43-65. [Google Scholar] [CrossRef]
|
|
[25]
|
Dewar, R.C. (1993) A Root-Shoot Partitioning Model Based on Carbon-Nitrogen-Water Interactions and Munch Phloem Flow. Functional Ecology, 7, 356-368. [Google Scholar] [CrossRef]
|
|
[26]
|
McQuattie, C.J. and Schier, G.A. (1992) Effect of Ozone and Aluminum on Pitch Pine (Pinus rigida) Seedlings: Anatomy of Mycorrhizae. Canadian Journal of Forest Research, 22, 1901-1916. [Google Scholar] [CrossRef]
|
|
[27]
|
Vogt, P.H. (1995) Genetic Aspects of Artificial Fertilization. Human Re-production (Oxford, England), 10, 128-137. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Guo, D.L., Mitchell, R.J. and Hendricks, J.J. (2004) Fine Root Branch Orders Respond Differentially to Carbon Source-Sink Manipulations in a Longleaf Pine Forest. Oecologia, 140, 450-457. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Vitousek, P.M., Porder, S., Houlton, B.Z., et al. (2010) Terrestrial Phosphorus Limitation: Mechanisms, Implications, and Nitrogen-Phosphorus Interactions. Ecological Applications, 20, 5-15. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Helja-Sisko, H., Ivika, O., Krista, L., et al. (2009) Ectomycorrhizal Root Tips in Relation to Site and Stand Characteristics in Norway Spruce and Scots Pine Stands in Boreal Forests. Tree Physiology, 29, 445-456. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Hans, L., Raven, J.A., Shaver, G.R. and Smith, S.E. (2008) Plant Nutrient-Acquisition Strategies Change with Soil Age. Trends in Ecology & Evolution, 23, 95-103.
|
|
[32]
|
Wen, Z., Li, H., Shen, Q., et al. (2019) Tradeoffs among Root Morphology, Exudation and Mycorrhizal Symbioses for Phospho-rus-Acquisition Strategies of 16 Crop Species. New Phytologist, 223, 882-895. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Ushio, M., Fujiki, Y., Hidaka, A., et al. (2015) Linkage of Root Physiol-ogy and Morphology as an Adaptation to Soil Phosphorus Impoverishment in Tropical Montane Forests. Functional Ecology, 29, 1235-1245. [Google Scholar] [CrossRef]
|
|
[34]
|
Deng, M.F., Liu, L.L., Sun, Z.Z., et al. (2016) Increased Phosphate Uptake but Not Resorption Alleviates Phosphorus Deficiency Induced by Nitrogen Deposition in Temperate Larix principis-rupprechtii Plantations. New Phytologist, 212, 1019-1029. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Majdi, H. and Persson, H. (1993) Spatial Distribution of Fine Roots, Rhizosphere and Bulk-Soil Chemistry in an Acidified Picea abies Stand. Scandinavian Journal of Forest Research, 8, 147-155. [Google Scholar] [CrossRef]
|
|
[36]
|
Yang, Y., Guo, J., Wang, G., et al. (2012) Effects of Drought and Nitrogen Addition on Photosynthetic Characteristics and Resource Allocation of Abies fabri Seedlings in Eastern Tibetan Plateau. New Forests, 43, 505-518. [Google Scholar] [CrossRef]
|
|
[37]
|
Pregitzer, K.S., Burton, A.J., Zak, D.R., et al. (2008) Simulated Chronic Nitrogen Deposition Increases Carbon Storage in Northern Temperate Forests. Global Change Biology, 14, 142-153. [Google Scholar] [CrossRef]
|
|
[38]
|
Wang, J., Hui, D., Ren, H., et al. (2013) Effects of Un-derstory Vegetation and Litter on Plant Nitrogen (N), Phosphorus (P), N:P Ratio and Their Relationships with Growth Rate of Indigenous Seedlings in Subtropical Plantations. PLoS ONE, 8, e84130. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Burton, A.J., Zogg, G.P., Pregitzer, K.S. and Zak, D.R. (1997) Effect of Measurement CO2 Concentration on Sugar Maple Root Respiration. Tree Physiology, 17, 421-427. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Kubiske, M.E., Pregitzer, K.S., Mikan, C.J., et al. (1997) Populus tremuloides Photosynthesis and Crown Architecture in Response to Elevated CO2 and Soil N Availability. Oecologia, 110, 328-336. [Google Scholar] [CrossRef]
|
|
[41]
|
Pregitzer, K.S., Kubiske, M.E., Yu, C.K., et al. (1997) Relationships among Root Branch Order, Carbon, and Nitrogen in Four Temperate Species. Oecologia, 111, 302-308. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
罗遵兰, 关潇, 吴晓莆, 等. 氮沉降对生态环境的影响研究进展[J]. 贵州农业科学, 2013, 41(10): 81-84.
|
|
[43]
|
Riddell, J. and Padgett, P. (2008) The Effect of HNO3 Gas on the Li-chen Ramalina menziesii. Flora, 203, 47-54. [Google Scholar] [CrossRef]
|
|
[44]
|
Chen, H., Li, D., Gurmesa, G.A., et al. (2015) Effects of Nitrogen Deposition on Carbon Cycle in Terrestrial Ecosystems of China: A Meta-Analysis. Environmental Pollution, 206, 352-360. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Wang, G. and Liu, F. (2014) Carbon Allocation of Chinese Pine Seedlings along a Nitrogen Addition Gradient. Forest Ecology and Management, 334, 114-121. [Google Scholar] [CrossRef]
|
|
[46]
|
Treseder, K.K. and Vitousek, P.M. (2001) Effects of Soil Nu-trient Availability on Investment in Acquisition of n and p in Hawaiian Rain Forests. Ecology, 82, 946-954. [Google Scholar] [CrossRef]
|
|
[47]
|
Vitousek, P.M. and Howarth, R.W. (1991) Nitrogen Limitation on Land and in the Sea: How Can It Occur? Biogeochemistry, 13, 87-115. [Google Scholar] [CrossRef]
|
|
[48]
|
Zhu, J., Wang, Q., He, N., Smith, M.D., Elser, J. J., Du, J., et al. (2016) Imbalanced Atmospheric Nitrogen and Phosphorus Depositions in China: Implications for Nutrient Limitation. Journal of Geophysical Research Biogeosciences, 121, 1605-1616. [Google Scholar] [CrossRef]
|
|
[49]
|
Liu, Y., Gao, P., Zhang, L., Niu, X. and Wang, B. (2016) Spatial Heterogeneity Distribution of Soil Total Nitrogen and Total Phosphorus in the Yaoxiang Watershed in a Hilly Area of Northern China Based on Geographic Information System and Geostatistics. Ecology & Evolution, 6, 6807-6816. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Cleveland, C.C. and Liptzin, D. (2007) C:N:P Stoichiometry in Soil: Is There a “Redfield Ratio” for the Microbial Biomass? Biogeochemistry, 85, 235-252. [Google Scholar] [CrossRef]
|
|
[51]
|
Sardans, J., Grau, O., Chen, H.Y.H., Janssens, I.A., Ciais, P., Piao, S., et al. (2017) Changes in Nutrient Concentrations of Leaves and Roots in Response to Global Change Factors. Global Change Biology, 23, 3849-3856. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Sardans, J., Alonso, R., Janssens, I.A., Carnicer, J., Vereseglou, S., Rillig, M.C., et al. (2017) Foliar and Soil Concentrations and Stoichiometry of Nitrogen and Phosphorous across European Pinus sylvestris Forests: Relationships with Climate, N Deposition and Tree Growth. Functional Ecology, 30, 676-689. [Google Scholar] [CrossRef]
|
|
[53]
|
Bell, C., Carrillo, Y., Boot, C.M., et al. (2014) Rhizosphere Stoi-chiometry: Are C:N:P Ratios of Plants, Soils, and Enzymes Conserved at the Plant Species-Level? New Phytologist, 201, 505-517. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Güsewell, S. (2010) N:P Ratios in Terrestrial Plants: Variation and Functional Significance. New Phytologist, 164, 243-266. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Zechmeister-Boltenstern, S., Keiblinger, K.M., Mooshammer, M., Peñuelas, J., Richter, A., Sardans, J. and Wanek, W. (2015) The Application of Ecological Stoichiometry to Plant-Microbial-Soil Organic Matter Transformations. Ecological Monographs, 85, 133-155.
|
|
[56]
|
Talhelm, A.F., Pregitzer, K.S. and Burton, A.J. (2011) No Evidence That Chronic Nitrogen Additions Increase Photosynthesis in Mature Sugar Maple Forests. Ecological Applications, 21, 2413-2424. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Hgberg, M.N., Hgberg, P. and Myrold, D.D. (2007) Is Microbial Community Composition in Boreal Forest Soils Determined by pH, C-to-N Ratio, the Trees, or All Three? Oecologia, 150, 590-601. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Liu, N., Wang, J., Guo, Q., Wu, S., Rao, X., Cai, X., et al. (2018) Alterations in Leaf Nitrogen Metabolism Indicated the Structural Changes of Subtropical Forest by Canopy Addition of Nitrogen. Ecotoxicology and Environmental Safety, 160, 134-143. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Peñuelas, J., Poulter, B., Sardans, J., Ciais, P., Marijn, V.D.V., Bopp, L., et al. (2013) Human-Induced Nitrogen-Phosphorus Imbalances alter Natural and Managed Ecosystems across the Globe. Nature Communications, 4, Article No. 2934. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Goswami, S., Fisk, M.C., Vadeboncoeur, M.A., Garrison-Johnston, M., Yanai, R.D. and Fahey, T.J. (2017) Phosphorus Limitation of Aboveground Production in Northern Hardwood Forests. Ecology, 99, 438-449. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Menge, D.N.L. and Field, C.B. (2007) Simulated Global Changes alter Phosphorus Demand in Annual Grassland. Global Change Biology, 13, 2582-2591. [Google Scholar] [CrossRef]
|
|
[62]
|
Zhang, K., Zhao, J., Wang, X.-Q., Xu, H.-S., Zang, H.-D., Liu, J.-N., et al. (2019) Estimates on Nitrogen Uptake in the Subsequent Wheat by Aboveground and Root Residue and Rhizodeposition of Using Peanut Labeled with 15N Isotope on the North China Plain. Journal of Integrative Agriculture, 18, 571-579. [Google Scholar] [CrossRef]
|
|
[63]
|
Naples, B.K. and Fisk, M.C. (2010) Belowground Insights into Nutrient Limitation in Northern Hardwood Forests. Biogeochemistry, 97, 109-121. [Google Scholar] [CrossRef]
|
|
[64]
|
Yuan, Z.Y. and Chen, H.Y.H. (2015) Negative Effects of Fertilization on Plant Nutrient Resorption. Ecology, 96, 373-380. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Ryan, M.H., Tibbett, M., Edmonds-Tibbett, T., Suriyagoda, L.D.B., et al. (2012) Carbon Trading for Phosphorus Gain: The Balance between Rhizosphere Carboxylates and Arbuscular Mycorrhizal Symbiosis in Plant Phosphorus Acquisition. Plant, Cell & Environment, 35, 2170-2180. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Crowley, K.F., McNeil, B.E., Lovett, G.M., Canham, C.D., Driscoll, C.T., Rustad, L.E., et al. (2012) Do Nutrient Limitation Patterns Shift from Nitrogen toward Phosphorus with Increasing Nitrogen Deposition across the Northeastern United States? Ecosystems, 15, 940-957. [Google Scholar] [CrossRef]
|
|
[67]
|
陈微微, 寇亮, 蒋蕾, 等. 亚热带湿地松叶片多元素化学计量与养分回收对氮添加的短期响应[J]. 应用生态学报, 2017, 28(4): 1094-1102.
|
|
[68]
|
Vergutz, L., Manzoni, S., Porporato, A., Novais, R.F. and Jackson, R.B. (2012) Global Resorption Efficiencies and Concentrations of Carbon and Nutrients in Leaves of Terrestrial Plants. Ecological Monographs, 82, 205-220. [Google Scholar] [CrossRef]
|
|
[69]
|
Cleveland, C.C., Houlton, B.Z., Smith, W.K., Marklein, A.R. and Running, S.W. (2013) Patterns of New versus Recycled Primary Production in the Terrestrial Biosphere. Proceedings of the National Academy of Sciences of the United States of America, 110, 12733-12737. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
See, C.R., Yanai, R.D. and Fahey, T.J. (2019) Shifting n and p Concentrations and Stoichiometry during Autumn Litterfall: Implications for Ecosystem Monitoring. Ecological Indicators, 103, 488-492. [Google Scholar] [CrossRef]
|