|
[1]
|
Cheng, J., Hu, P., Ellis, P., French, S., Kelly, G. and Lok, C.M. (2010) Density Functional Theory Study of Iron and Cobalt Carbides for Fischer-Tropsch Synthesis. The Journal of Physical Chemistry C, 114, 1085-1093.
[Google Scholar] [CrossRef]
|
|
[2]
|
Zhao, Y.H., Sun, K.J., Ma, X.F., et al. (2011) Chain Growth via Formyl Insertion on Rh and Co Catalysts in Syngas Conversion. Angewandte Chemie International Edition, 50, 5335-5338. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Liu, J.X., Pei, Y.P., Zhao, Y.H., et al. (2015) High Alcohols Synthesis via Fischer-Tropsch Reaction at Cobalt Metal/Carbide Interface. ACS Catalysis, 5, 3620-3624. [Google Scholar] [CrossRef]
|
|
[4]
|
王川. 合成气制高碳醇Co-Co2C基催化剂项目通过鉴定[J]. 石油化工技术与经济, 2020(36): 10.
|
|
[5]
|
石博文, 刘素丽, 袁华, 孙向前. 羰基合成高碳醇工艺进展及费托烯烃产品氢甲酰化[J]. 化工科技, 2020, 28(1): 59-64.
|
|
[6]
|
Xu, X.D., Doesburg, E.B.M., Scholten, J.J.F., et al. (1987) Synthesis of Higher Alcohol from Syngas-Recently Patented Catalysts and Tentative Ideas on the Mechanism. Catalysis Today, 2, 125-170.
[Google Scholar] [CrossRef]
|
|
[7]
|
Lundeen, A. and Poe, R. (1977) Encyclopedia of Chemical Processing and Design. Vol. 2, Marcel Dekker Inc., New York, 465-481.
|
|
[8]
|
Breit, B. (2003) Synthetic Aspects of Stereoselective Hydroformylation. Accounts of Chemical Research, 36, 264-275.
[Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Cosultchi, A., Perez-Luna, M., Antonio Morales-Serna, J., et al. (2012) Characterization of Modified Fischer-Tropsch Catalysts Promoted with Alkaline Metals for Higher Alcohol Synthesis. Catalysis Letters, 142, 368-377.
[Google Scholar] [CrossRef]
|
|
[10]
|
Zhao, Y.H., Su, H.Y., Sun, K., et al. (2012) Structural and Electronic Properties of Cobalt Carbide Co2C and Its Surface Stability: Density Functional Theory Study. Surface Science, 606, 598-604.
[Google Scholar] [CrossRef]
|
|
[11]
|
Faraoun, H.I., Zhang, Y.D., Esling, C., et al. (2006) Crystalline, Electronic and Magnetic Structures of θ-Fe3C, χ-Fe5C2 and η-Fe2C from First Principle Calculation. Journal of Applied Physics, 99, Article ID: 093508.
[Google Scholar] [CrossRef]
|
|
[12]
|
Bao, L.L., Huo, C.F., Deng, C.M., et al. (2009) Structure and Stability of the Crystal Fe2C and Low Index Surfaces. Journal of Fuel Chemistry and Technology, 37, 104-108. [Google Scholar] [CrossRef]
|
|
[13]
|
Volkova, G.G., Yurieva, T.M., Plyasova, L.M., Naumova, M.I. and Zaikovskii, V.I.J. (2000) Role of the Cu-Co Alloy and Cobalt Carbide in Higher Alcohol Synthesis. Journal of Molecular Catalysis A: Chemical, 158, 389-393.
[Google Scholar] [CrossRef]
|
|
[14]
|
Zhao, Z., Lu, W., Yang, R., Zhu, H., Dong, W., Sun, F., Jiang, Z., Lyu, Y., Liu, T., Du, H. and Ding, Y. (2018) Insight into the Formation of Co@Co2C Catalysts for Direct Synthesis of Higher Alcohols and Olefins from Syngas. ACS Catalysis, 8, 228-241. [Google Scholar] [CrossRef]
|
|
[15]
|
Luk, H.T., Mondelli, C., Ferre, D.C., Stewart, J.A. and Perez-Ramirez, J. (2017) Status and Prospects in Higher Alcohols Synthesis from Syngas. Chemical Society Reviews, 46, 1358-1426. [Google Scholar] [CrossRef]
|
|
[16]
|
Subramanian, N.D., Kumar, C.S.S.R., Watanabe, K., et al. (2012) A Drifts Study of CO Adsorption and Hydrogenation on Cu-Based Core-Shell Nanoparticles. Catalysis Science & Technology, 2, 621-631.
[Google Scholar] [CrossRef]
|
|
[17]
|
Subramanian, N.D., Moreno, J., Spivey, J.J., et al. (2011) Copper Core-Porous Manganese Oxide Shell Nanoparticles. The Journal of Physical Chemistry C, 115, 14500-14506. [Google Scholar] [CrossRef]
|
|
[18]
|
Wang, B., Liang, D., Zhang, R. and Ling, L. (2018) Crystal Facet Dependence for the Selectivity of C2 Species over Co2C Catalysts in the Fischer-Tropsch Synthesis. The Journal of Physical Chemistry C, 122, 29249-29258.
[Google Scholar] [CrossRef]
|
|
[19]
|
An, Y., Zhao, Y., Yu, F., et al. (2018) Morphology Control of Co2C Nanostructures via the Reduction Process for Direct Production of Lower Olefins from Syngas. Journal of Catalysis, 366, 289-299.
|