|
[1]
|
Semenza, G.L. (2004) Hydroxylation of HIF-1: Oxygen Sensing at the Molecular Level. Physiology (Bethesda), 19, 176-182. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Wolfle, D., Schmidt, H. and Jungermann, K. (1983) Short-Term Modulation of Glycogen Metabolism, Glycolysis and Gluconeogenesis by Physiological Oxygen Concentra-tions in Hepatocyte Cultures. European Journal of Biochemistry, 135, 405-412. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Wang, G.L. and Semenza, G.L. (1993) General Involve-ment of Hypoxia-Inducible Factor 1 in Transcriptional Response to Hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 90, 4304-4308. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Lee, J.W., Bae, S.H., Jeong, J.W., et al. (2004) Hypoxia-Inducible Factor (HIF-1) α: Its Protein Stability and Biological Functions. Experimental and Molecular Medicine, 36, 1-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J.M., Lane, W.S. and Kaelin, W.G. (2001) HIFalpha Targeted for VHL-Mediated Destruction by Proline Hy-droxylation: Implications for O2 Sensing. Science, 292, 464-468. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Epstein, A.C., Gleadle, J.M., McNeill, L.A., Hewitson, K.S., O’Rourke, J., Mole, D.R., Mukherji, M., Metzen, E., Wilson, M.I., Dhanda, A., et al. (2001) C. elegans EGL-9 and Mammalian Homologs Define a Family of Dioxygenases that Regulate HIF by Prolyl Hydroxylation. Cell, 107, 43-54. [Google Scholar] [CrossRef]
|
|
[7]
|
Semenza, G.L. (2003) Targeting HIF-1 for Cancer Therapy. Nature Reviews Cancer, 3, 721-732. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Jelkmann, W. (1992) Erythropoietin: Structure, Control of Production and Function. Physiological Reviews, 72, 449-489. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
White, F.C., Carroll, S.M., Magnet, A. and Bloor, C.M. (1992) Exercise Induced Coronary Collateral Development: A Comparison to Other Models of Myocardial Angiogenesis. Cir-culation Research, 71, 1490-1500. [Google Scholar] [CrossRef]
|
|
[10]
|
Taylor, L. and Curthoys, N.P. (2004) Glutamine Metabolism: Role in Acid-Base Balance. Biochemistry and Molecular Biology Education, 32, 291-304. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
DeBerardinis, R.J., Mancuso, A., Daikhin, E., et al. (2007) Beyond Aerobic Glycolysis: Transformed Cells Can Engage in Glutamine Metabolism That Exceeds the Requirement for Protein and Nucleotide Synthesis. Proceedings of the National Academy of Sciences of the United States of America, 104, 19345-19350. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Feron, O. (2009) Pyruvate into Lactate and Back: From the Warburg Effect to Symbiotic Energy Fuel Exchange in Cancer Cells. Radiotherapy and Oncology, 92, 329-333. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Dang, C.V. (2010) Glutaminolysis: Supplying Carbon or Nitro-gen or Both for Cancer Cells? Cell Cycle, 9, 3884-3886. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Dang, C.V. (2010) Rethinking the Warburg Effect with Myc Mi-cromanaging Glutamine Metabolism. Cancer Research, 70, 859-862. [Google Scholar] [CrossRef]
|
|
[15]
|
Wise, D.R. and Thompson, C.B. (2010) Glutamine Addic-tion: A New Therapeutic Target in Cancer. Trends in Biochemical Sciences, 35, 427-433. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Bhutia, Y.D., Babu, E., Ramachandran, S. and Ganapathy, V. (2015) Amino acid Transporters in Cancer and Their Relevance to Glutamine Addiction: Novel Targets for the Design of a New Class of Anticancer Drugs. Cancer Research, 75, 1782-1788. [Google Scholar] [CrossRef]
|
|
[17]
|
Nicklin, P., et al. (2009) Bidirectional Transport of Amino Acids Regulates mTOR and Autophagy. Cell, 136, 521-534. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Kamphorst, J.J., et al. (2015) Human Pancreatic Cancer Tumors Are Nutrient Poor and Tumor Cells Actively Scavenge Extracellular Protein. Cancer Research, 75, 544-553. [Google Scholar] [CrossRef]
|
|
[19]
|
Commisso, C., et al. (2013) Macropinocytosis of Protein Is an Amino Acid Supply Route in Ras-Transformed Cells. Nature, 497, 633-637. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Lane, A.N. and Fan, T.W. (2015) Regulation of Mammalian Nucleotide Metabolism and Biosynthesis. Nucleic Acids Research, 43, 2466-2485. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
GHolleran, A.L., Briscoe, D.A., Fiskum, G. and Kelleher, J.K. (1995) Glutamine Metabolism in AS-30D Hepatoma Cells. Evidence for Its Conversion into Lipids via Reductive Carboxylation. Molecular and Cellular Biochemistry, 152, 95-101. [Google Scholar] [CrossRef]
|
|
[22]
|
Gameiro, P.A., Laviolette, L.A., Kelleher, J.K., Iliopoulos, O. and Stephanopoulos, G. (2013) Cofactor Balance by Nicotinamide Nucleo-tide Transhydrogenase (NNT) Coordinates Reductive Carboxylation and Glucose Catabolism in the Tricarboxylic Acid (TCA) Cycle. Journal of Biological Chemistry, 288, 12967-12977. [Google Scholar] [CrossRef]
|
|
[23]
|
Metallo, C.M., Gameiro, P.A., Bell, E.L., Mattaini, K.R., Yang, J., Hiller, K., Jewell, C.M., Johnson, Z.R., Irvine, D.J., Guarente, L., et al. (2012) Reductive Glutamine Metabolism by IDH1 Mediates Lipogenesis under Hypoxia. Nature, 481, 380-384. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Moreadith, R.W. and Lehninger, A.L. (1984) The Pathways of Glutamate and Glutamine Oxidation by Tumor Cell Mitochondria. Role of Mitochondrial NAD(P)+-Dependent Malic Enzyme. Journal of Biological Chemistry, 259, 6215-6221. [Google Scholar] [CrossRef]
|
|
[25]
|
Alberghina, L. and Gaglio, D. (2014) Redox Control of Glu-tamine Utilization in Cancer. Cell Death & Disease, 5, e1561. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Wroblewski, F. and Ladue, J.S. (1956) Serum Glutamic Pyruvic Transaminase in Cardiac with Hepatic Disease. Proceedings of the Society for Experimental Biology and Medicine, 91, 569-571. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Altman, B.J., Stine, Z.E. and Dang, C.V. (2016) From Krebs to Clinic: Glutamine Metabolism to Cancer Therapy. Nature Reviews Cancer, 16, 619-634. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Gaglio, D., Soldati, C., Vanoni, M., Alberghina, L. and Chiaradonna, F. (2009) Glutamine Deprivation Induces Abortive S Phase Rescued by Deoxyribonucleotides in K-Ras Transformed Fi-broblasts. PLoS ONE, 4, e4715. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Sellers, K., et al. (2015) Pyruvate Carboxylase Is Critical for Non-Small-Cell Lung Cancer Proliferation. The Journal of Clinical Investigation, 125, 687-698. [Google Scholar] [CrossRef]
|
|
[30]
|
Zhang, Y., Ren, Y.-J., Guo, L.-C., Ji, C., Hu, J., Zhang, H.-H., Xu, Q.-H., Zhu,W.-D., Ming, Z.-J., Yuan, Y.-S., et al. (2017) Nucleus Accumbens-Associated Protein-1 Promotes Glycolysis and Survival of Hypoxic Tumor Cells via the HDAC4-HIF-1 Axis. Oncogene, 36, 4171-4181. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Warburg, O. (1956) On Respiratory Impairment in Cancer Cells. Science, 124, 269-270. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Gameiro, P.A., Yang, J., Metelo, A.M., Perez-Carro, R., Baker, R., Wang, Z., Arreola, A., Rathmell, W.K., Olumi, A., Lopez-Larrubia, P., et al. (2013) In Vivo HIF-Mediated Reductive Carboxylation Is Regulated by Citrate Levels and Sensitizes VHL-Deficient Cells to Glutamine Deprivation. Cell Metab-olism, 17, 372-385. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Le, A., Lane, A.N., Hamaker, M., Bose, S., Gouw, A., et al. (2012) Glucose-Independent Glutamine Metabolism via TCA Cycling for Proliferation and Survival in B Cells. Cell Metabolism, 15, 110-121. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Wise, D.R., Ward, P.S., Shay, J.E.S., et al. (2011) Hypoxia Pro-motes Isocitrate Dehydrogenase-Dependent Carboxylation of α-Ketoglutarate to Citrate to Support Cell Growth and Via-bility. Proceedings of the National Academy of Sciences, 108, 19611-19616. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Sun, R.C. and Denko, N.C. (2014) Hypoxic Regulation of Gluta-mine Metabolism through HIF1 and SIAH2 Supports Lipid Synthesis That Is Necessary for Tumor Growth. Cell Me-tabolism, 19, 285-292. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Gao, P., et al. (2009) c-Myc Suppression of miR-23a/b Enhances Mitochondrial Glutaminase Expression and Glutamine Metabolism. Nature, 458, 762-765. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Wang, Y., Bai, C., Ruan, Y., et al. (2019) Coordinative Metabolism of Glutamine Carbon and Nitrogen in Proliferating Cancer Cells under Hypoxia. Nature Communications, 10, 201. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Perez-Escuredo, J., Dadhich, R.K., Dhup, S., Cacace, A., van Hee, V.F., de Saedeleer, C.J., Sboarina, M., Rodriguez, F., Fontenille, M.-J., Brisson, L., et al. (2016) Lactate Promotes Glutamine Uptake and Metabolism in Oxidative Cancer Cells. Cell Cycle (Georgetown, Tex.), 15, 72-83. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Tapper, E.B., Jiang, Z.G. and Patwardhan, V.R. (2015) Re-fining the Ammonia Hypothesis: A Physiology-Driven Approach to the Treatment of Hepatic Encephalopathy. Mayo Clinic Proceedings, 90, 646-658. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Kappler, M., Pabst, U., Rot, S., Taubert, H., Wichmann, H., Schubert, J., Bache, M., Weinholdt, C., Immel, U.-D., Grosse, I., et al. (2017) Normoxic Accumulation of HIF1alpha Is Associated with Glutaminolysis. Clinical Oral Investigations, 21, 211-224. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Patel, M.S. and Harris, R.A. (1995) Mammalian Alpha-Keto Acid Dehydrogenase Complexes: Gene Regulation and Genetic Defects. The FASEB Journal, 9, 1164-1172. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Jiang, Z.-F., et al. (2017) Hypoxia Promotes Mitochondrial Glu-tamine Metabolism through HIF1a-GDH Pathway Inhuman Lung Cancer Cells. Biochemical and Biophysical Research Communications, 483, 32-38. [Google Scholar] [CrossRef] [PubMed]
|