|
[1]
|
GBD 2016 Causes of Death Collaborators (2017) Global, Regional, and National Age-Sex Specific Mortality for 264 Causes of Death, 1980-2016: A Systematic Analysis for the Global Burden of Disease Study 2016. The Lancet, 390, 1151-1210. [Google Scholar] [CrossRef]
|
|
[2]
|
GBD Tuberculosis Collaborators (2018) Global, Regional, and National Burden of Tuberculosis, 1990-2016: Results from the Global Burden of Diseases, Injuries, and Risk Factors 2016 Study. The Lancet Infectious Diseases, 18, 1329-1349. [Google Scholar] [CrossRef]
|
|
[3]
|
Floyd, K., Glaziou, P., Houben, R.M.G.J., et al. (2018) Global Tuberculosis Targets and Milestones Set for 2016-2035: Definition and Rationale. International Journal of Tuberculosis and Lung Disease, 22, 723-730. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Shimeles, E., Enquselassie, F., Aseffa, A., et al. (2019) Risk Factors for Tuberculosis: A Case-Control Study in Addis Ababa, Ethiopia. PLoS ONE, 14, e0214235. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Torrelles, J.B. and Schlesinger, L.S. (2017) Integrating Lung Physiology, Immunology, and Tuberculosis. Trends in Microbiology, 25, 688-697. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Moliva, J.I., Duncan, M.A., Olmo-Fontánez, A., et al. (2019) The Lung Mucosa Environment in the Elderly Increases Host Susceptibility to Mycobacterium tuberculosis Infection. The Journal of Infectious Diseases, 220, 514-523. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Moliva, J.I., Rajaram, M.V., Sidiki, S., et al. (2014) Molecular Composition of the Alveolar Lining Fluid in the Aging Lung. Age (Dordr), 36, 9633. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Scordo, J.M., Arcos, J., Kelley, H.V., et al. (2017) Mycobacterium Tuberculosis Cell Wall Fragments Released upon Bacterial Contact with the Human Lung Mucosa Alter the Neutrophil Response to Infection. Frontiers in Immunology, 8, 307. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Hall-Stoodley, L., Watts, G., Crowther, J.E., et al. (2006) Mycobacterium Tuberculosis Binding to Human Surfactant Proteins A and D, Fibronectin, and Small Airway Epithelial Cells under Shear Conditions. Infection and Immunity, 74, 3587-3596. [Google Scholar] [CrossRef]
|
|
[10]
|
Ferguson, J.S., Weis, J.J., Martin, J.L., et al. (2004) Complement Protein C3 Binding to Mycobacterium tuberculosis Is Initiated by the Classical Pathway in Human Bronchoalveolar Lavage Fluid. Infection and Immunity, 72, 2564-2573. [Google Scholar] [CrossRef]
|
|
[11]
|
Lönnroth, K., Roglic, G. and Harries, A.D. (2014) Improving Tuberculosis Prevention and Care through Addressing the Global Diabetes Epidemic: From Evidence to Policy and Practice. The Lancet Diabetes & Endocrinology, 2, 730-739. [Google Scholar] [CrossRef]
|
|
[12]
|
Lopez-Lopez, N., Martinez, A.G.R., Garcia-Hernandez, M.H., et al. (2018) Type-2 Diabetes Alters the Basal Phenotype of Human Macrophages and Diminishes Their Capacity to Respond, Internalise, and Control Mycobacterium tuberculosis. Memórias do Instituto Oswaldo Cruz, 113, e170326. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Ayelign, B., Negash, M., Genetu, M., et al. (2019) Immunological Impacts of Diabetes on the Susceptibility of Mycobacterium tuberculosis. Journal of Immunology Research, 2019, Article ID: 6196532. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Chumburidze-Areshidze, N., Kezeli, T., Avaliani, Z., et al. (2020) The Relationship between Type-2 Diabetes and Tuberculosis. Georgian Medical News, No. 300, 69-74.
|
|
[15]
|
Larsen, N., Vogensen, F.K., van den Berg, F.W., et al. (2010) Gut Microbiota in Human Adults with Type 2 Diabetes Differs from Non-Diabetic Adults. PLoS ONE, 5, e9085. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Sinha, P., Davis, J., Saag, L., et al. (2019) Undernutrition and Tuberculosis: Public Health Implications. The Journal of Infectious Diseases, 219, 1356-1363. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Hancock, R.E., Haney, E.F. and Gill, E.E. (2016) The Immunology of Host Defence Peptides: Beyond Antimicrobial Activity. Nature Reviews Immunology, 16, 321-334. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Porto, W.F., Nolasco, D.O., Pires, Á.S., et al. (2016) Prediction of the Impact of Coding Missense and Nonsense Single Nucleotide Polymorphisms on HD5 and HBD1 Antibacterial Activity against Escherichia coli. Biopolymers, 106, 633-644. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Rajamanickam, A., Munisankar, S., Dolla, C.K., et al. (2020) Diminished Systemic and Mycobacterial Antigen Specific Anti-Microbial Peptide Responses in Low Body Mass Index-Latent Tuberculosis Co-Morbidity. Frontiers in Cellular and Infection Microbiology, 10, 165. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Rajamanickam, A., Munisankar, S., Dolla, C.K., et al. (2019) Undernutrition Is Associated with Perturbations in T Cell-, B Cell-, Monocyte- and Dendritic Cell-Subsets in Latent Mycobacterium tuberculosis Infection. PLoS ONE, 14, e0225611. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Martin, S.J. and Sabina, E.P. (2019) Malnutrition and Associated Disorders in Tuberculosis and Its Therapy. Journal of Dietary Supplements, 16, 602-610. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Lai, C.C., Lee, M.T., Lee, S.H., et al. (2015) Risk of Incident Active Tuberculosis and Use of Corticosteroids. International Journal of Tuberculosis and Lung Disease, 19, 936-942. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Wang, J., Wang, R., Wang, H., et al. (2017) Glucocorticoids Suppress Antimicrobial Autophagy and Nitric Oxide Production and Facilitate Mycobacterial Survival in Macrophages. Scientific Reports, 7, Article No. 982. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Watson, R.O., Manzanillo, P.S. and Cox, J.S. (2012) Extracellular M. tuberculosis DNA Targets Bacteria for Autophagy by Activating the Host DNA-Sensing Pathway. Cell, 150, 803-815. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Singh, A., Vajpayee, M., Ali, S.A., et al. (2014) Cellular Interplay among Th17, Th1, and Treg Cells in HIV-1 Subtype “C” Infection. Journal of Medical Virology, 86, 372-384. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Walker, N.F., Meintjes, G. and Wilkinson, R.J. (2013) HIV-1 and the Immune Response to TB. Future Virology, 8, 57-80. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Tomlinson, G.S., Bell, L.C., Walker, N.F., et al. (2014) HIV-1 Infection of Macrophages Dysregulates Innate Immune Responses to Mycobacterium tuberculosis by Inhibition of Interleukin-10. The Journal of Infectious Diseases, 209, 1055-1065. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Kumawat, K., Pathak, S.K., Spetz, A.L., et al. (2010) Exogenous Nef Is an Inhibitor of Mycobacterium tuberculosis-Induced Tumor Necrosis Factor-Alpha Production and Macrophage Apoptosis. Journal of Biological Chemistry, 285, 12629-12637. [Google Scholar] [CrossRef]
|
|
[29]
|
Killian, M.S. (2012) Dual Role of Autophagy in HIV-1 Replication and Pathogenesis. AIDS Research and Therapy, 9, 16. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Simonsen, D.F., Farkas, D.K., Horsburgh, C.R., et al. (2017) Increased Risk of Active Tuberculosis after Cancer Diagnosis. Journal of Infection, 74, 590-598. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Cho, P.J., Wu, C.Y., Johnston, J., et al. (2019) Progression of Chronic Kidney Disease and the Risk of Tuberculosis: An Observational Cohort Study. International Journal of Tuberculosis and Lung Disease, 23, 555-562. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Moran, E., Baharani, J., Dedicoat, M., et al. (2018) Risk Factors Associated with the Development of Active Tuberculosis among Patients with Advanced Chronic Kidney Disease. Journal of Infection, 77, 291-295. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Khan, A.H., Sulaiman, S.A.S., Hassali, M.A., et al. (2020) Effect of Smoking on Treatment Outcome among Tuberculosis Patients in Malaysia; a Multicenter Study. BMC Public Health, 20, Article No. 854. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Underner, M. and Perriot, J. (2012) Tabac et tuberculose [Smoking and Tuberculosis]. La Presse Medicale, 41, 1171-1180. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
AlQasrawi, D. and Naser, S.A. (2020) Nicotine Modulates MyD88-Dependent Signaling Pathway in Macrophages during Mycobacterial Infection. Microorganisms, 8, 1804. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Cholo, M.C., Rasehlo, S.S.M., Venter, E., et al. (2020) Effects of Cigarette Smoke Condensate on Growth and Biofilm Formation by Mycobacterium tuberculosis. BioMed Research International, 2020, Article ID: 8237402. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
van Zyl-Smit, R.N., Binder, A., Meldau, R., et al. (2014) Cigarette Smoke Impairs Cytokine Responses and BCG Containment in Alveolar Macrophages. Thorax, 69, 363-370. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Gómez, A.C., Rodríguez-Fernández, P., Villar-Hernández, R., et al. (2020) E-Cigarettes: Effects in Phagocytosis and Cytokines Response against Mycobacterium tuberculosis. PLoS ONE, 15, e0228919. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Nizamani, P., Afridi, H.I., Kazi, T.G., et al. (2019) Essential Trace Elemental Levels (Zinc, Iron and Copper) in the Biological Samples of Smoker Referent and Pulmonary Tuberculosis Patients. Toxicology Reports, 6, 1230-1239. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Ibs, K.H. and Rink, L. (2003) Zinc-Altered Immune Function. Journal of Nutrition, 133, 1452S-1456S. [Google Scholar] [CrossRef]
|
|
[41]
|
Zalewski, P.D. (2006) Zinc Metabolism in the Airway: Basic Mechanisms and Drug Targets. Current Opinion in Pharmacology, 6, 237-243. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Boelaert, J.R., Vandecasteele, S.J., Appelberg, R., et al. (2007) The Effect of the Host’s Iron Status on Tuberculosis. The Journal of Infectious Diseases, 195, 1745-1753. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Imtiaz, S., Shield, K.D., Roerecke, M., et al. (2017) Alcohol Consumption as a Risk Factor for Tuberculosis: Meta-Analyses and Burden of Disease. European Respiratory Journal, 50, Article ID: 1700216. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Krutko, V., Oparin, O., Nikolaieva, L., et al. (2020) Medical and Social Characteristics of Patients with Tuberculosis in the Context of Alcohol Consumption. Georgian Medical News, No. 300, 63-69.
|
|
[45]
|
Ma, Y., Du, J., Shu, W., et al. (2019) Effect of Alcohol Drinking on Sputum Conversion at the End of Second Month and Outcome of Smear-Positive Pulmonary Tuberculosis Patients. Chinese Medical Journal, 99, 1090-1094.
|
|
[46]
|
Simet, S.M. and Sisson, J.H. (2015) Alcohol’s Effects on Lung Health and Immunity. Alcohol Research, 37, 199-208.
|
|
[47]
|
Jee, B. (2020) Understanding the Early Host Immune Response against Mycobacterium tuberculosis. Central European Journal of Immunology, 45, 99-103. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Joshi, P.C., Applewhite, L., Ritzenthaler, J.D., et al. (2005) Chronic Ethanol Ingestion in Rats Decreases Granulocyte-Macrophage Colony-Stimulating Factor Receptor Expression and Downstream Signaling in the Alveolar Macrophage. The Journal of Immunology, 175, 6837-6845. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Crews, F.T., Bechara, R., Brown, L.A., et al. (2006) Cytokines and Alcohol. Alcoholism: Clinical and Experimental Research, 30, 720-730. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Szabo, G. and Saha, B. (2015) Alcohol’s Effect on Host Defense. Alcohol Research, 37, 159-170.
|
|
[51]
|
Yeligar, S.M., Chen, M.M., Kovacs, E.J., et al. (2016) Alcohol and Lung Injury and Immunity. Alcohol, 55, 51-59. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Butts, M., Singh Paulraj, R., Haynes, J., et al. (2019) Moderate Alcohol Consumption Inhibits Sodium-Dependent Glutamine Co-Transport in Rat Intestinal Epithelial Cells in Vitro and Ex Vivo. Nutrients, 11, 2516. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Tripathi, D., Welch, E., Cheekatla, S.S., et al. (2018) Alcohol Enhances Type 1 Interferon-α Production and Mortality in Young Mice Infected with Mycobacterium tuberculosis. PLOS Pathogens, 14, e1007174. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Irwin, M.R. (2015) Why Sleep Is Important for Health: A Psychoneuroimmunology Perspective. Annual Review of Psychology, 66, 143-172. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
韩笑. 手机依赖与肺结核危险因素的配对病例对照研究[D]: [硕士学位论文]. 延安: 延安大学, 2019.
|
|
[56]
|
Kou, T., Wang, Q., Lv, W., et al. (2019) Poor Sleep Quality Is Associated with a Higher Risk of Pulmonary Tuberculosis in Patients with a Type 2 Diabetes Mellitus Course for More than 5 Years. Japanese Journal of Infectious Diseases, 72, 243-249. [Google Scholar] [CrossRef]
|
|
[57]
|
戴磊, 黎伟林, 黎志刚, 等. 睡眠不足对肺结核病空洞发生风险的Logistic回归分析[J]. 世界睡眠医学杂志, 2020, 7(2): 203-205.
|
|
[58]
|
Irwin, M.R. and Opp, M.R. (2017) Sleep Health: Reciprocal Regulation of Sleep and Innate Immunity. Neuropsychopharmacology, 42, 129-155. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Ibarra-Coronado, E.G., Pantaleon-Martinez, A.M., Velazquez-Moctezuma, J., et al. (2015) The Bidirectional Relationship between Sleep and Immunity against Infections. Journal of Immunology Research, 2015, Article ID: 678164. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Lungato, L., Gazarini, M.L., Paredes-Gamero, E.J., et al. (2015) Paradoxical Sleep Deprivation Impairs Mouse Survival after Infection with Malaria Parasites. Malaria Journal, 14, 183. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
中国互联网络信息中心. 第46次《中国互联网络发展状况统计报告》[EB/OL].
http://www.cnnic.cn/hlwfzyj/hlwxzbg/hlwtjbg/202009/t20200929_71257.htm, 2020-09-29.
|
|
[62]
|
El-Gohary, O.A. and Said, M.A. (2017) Effect of Electromagnetic Waves from Mobile Phone on Immune Status of Male Rats: Possible Protective Role of Vitamin D. Canadian Journal of Physiology and Pharmacology, 95, 151-156. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Singh, K.V., Gautam, R., Meena, R., et al. (2020) Effect of Mobile Phone Radiation on Oxidative Stress, Inflammatory Response, and Contextual Fear Memory in Wistar Rat. Environmental Science and Pollution Research International, 27, 19340-19351. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Pei, Y.H., et al. (2019) Effect of Cell Phone Radiation on Neutrophil of Mice. International Journal of Radiation Biology, 95, 1178-1184. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Liu, C., Gao, P., Xu, S.C., et al. (2013) Mobile Phone Radiation Induces Mode-Dependent DNA Damage in a Mouse Spermatocyte-Derived Cell Line: A Protective Role of Melatonin. International Journal of Radiation Biology, 89, 993-1001. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Agarwal, A., Singh, A., Hamada, A., et al. (2011) Cell Phones and Male Infertility: A Review of Recent Innovations in Technology and Consequences. International Brazilian Journal of Urology, 37, 432-454. [Google Scholar] [CrossRef]
|
|
[67]
|
Zeni, O., Schiavoni, A., Perrotta, A., et al. (2008) Evaluation of Genotoxic Effects in Human Leukocytes after in Vitro Exposure to 1950 MHz UMTS Radiofrequency Field. Bioelectromagnetics, 29, 177-184. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Lantow, M., Lupke, M., Frahm, J., et al. (2006) ROS Release and Hsp70 Expression after Exposure to 1,800 MHz Radiofrequency Electromagnetic Fields in Primary Human Monocytes and Lymphocytes. Radiation and Environmental Biophysics, 45, 55-62. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Balci, M., Devrim, E. and Durak, I. (2007) Effects of Mobile Phones on Oxidant/Antioxidant Balance in Cornea and Lens of Rats. Current Eye Research, 32, 21-25. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Lee, B.C., Johng, H.M., Lim, J.K., et al. (2004) Effects of Extremely Low Frequency Magnetic Field on the Antioxidant Defense System in Mouse Brain: A Chemiluminescence Study. Journal of Photochemistry and Photobiology B, 73, 43-48. [Google Scholar] [CrossRef] [PubMed]
|