|
[1]
|
付必伟, 艾志久, 胡坤, 等. 微波辐射稠油降粘脱水实验研究[J]. 辐射研究与辐射工艺学报, 2015, 33(3): 49-54.
|
|
[2]
|
Zhang, Y.N., Chen, P., Liu, S.Y., et al. (2017) Effects of Feedstock Characteristics on Micro-wave-Assisted Pyrolysis—A Review. Bioresource Technology, 230, 143-151. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Sun, S., Huang, X., Lin, J., et al. (2018) Study on the Effects of Catalysts on the Immobilization Efficiency and Mechanism of Heavy Metals during the Microwave Pyrolysis of Sludge. Waste Management, 77, 131-139. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Sivagami, K., Tamizhdurai, P., Mujahed, S., et al. (2021) Process Optimization for the Recovery of Oil from Tank Bottom Sludge Using Microwave Pyrolysis. Process Safety and Environmental Protection, 148, 392-399. [Google Scholar] [CrossRef]
|
|
[5]
|
许昌. 炼厂油泥微波热解特性实验研究[D]: [硕士学位论文]. 济南: 山东大学, 2019.
|
|
[6]
|
商辉, 张文慧, 翟云娟, 等. 含油钻井废弃物微波热解析技术[J]. 油田化学, 2019, 36(1): 169-173.
|
|
[7]
|
Li, H., Shi, P., Fan, X., et al. (2018) Understanding the Influence of Microwave on the Relative Volatility Used in the Pyrolysis of Indonesia Oil Sands. Chinese Journal of Chemical Engineering, 26, 1485-1492. [Google Scholar] [CrossRef]
|
|
[8]
|
权熙, 张军, 尹琳琳, 等. 污泥微波热解与传统热解过程硫转化途径解析[J]. 环境卫生工程, 2020, 28(4): 110.
|
|
[9]
|
杨亚青. 废轮胎微波热解过程及产物分布特性试验研究[D]: [硕士学位论文]. 济南: 山东大学, 2017.
|
|
[10]
|
黄晓菲. 微波热解模拟污泥产生物燃料及有机元素迁移规律研究[D]: [硕士学位论文]. 深圳: 深圳大学, 2018.
|
|
[11]
|
耿海红. 微波热解模拟污泥产生物炭的重金属转化与资源化利用研究[D]: [硕士学位论文]. 深圳: 深圳大学, 2018.
|
|
[12]
|
徐士祺, 马勇, 郝上京. 微波处理含油污泥影响因素实验研究[J]. 清洗世界, 2019, 35(10): 28-29.
|
|
[13]
|
Francis, P.P., Shravani, B., Vinu, R., et al. (2021) Production of Diesel Range Hydrocarbons from Crude Oil Sludge via Microwave-Assisted Pyrolysis and Catalytic Upgradation. Process Safety and Environmental Protection, 146, 383-395. [Google Scholar] [CrossRef]
|
|
[14]
|
俞音, 蒋勇军, 高庆国, 等. 含油污泥热解综合处理技术研究与应用[C]//《环境工程》2018年全国学术年会. 北京: 工业建筑杂志社, 2018: 5.
|
|
[15]
|
Abdulredha, M.M., Siti, A.H. and Luqman, C.A. (2020) Overview on Petroleum Emulsions, Formation, Influence and Demulsification Treatment Techniques. Arabian Journal of Chemistry, 13, 3403-3428. [Google Scholar] [CrossRef]
|
|
[16]
|
陆洋. 油水乳状液微波与超声波破乳研究[D]: [硕士学位论文]. 北京: 中国石油大学, 2017.
|
|
[17]
|
潘志娟. 基于微波破乳和热解的含油污泥资源化处理研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2015.
|
|
[18]
|
孙娜娜. 塔河稠油乳化降黏及微波化学破乳研究[D]: [博士学位论文]. 成都: 西南石油大学, 2016.
|
|
[19]
|
Abdurahman, N.H., Yunus, R.M., Azhari, N.H., et al. (2017) The Potential of Microwave Heating in Separating Water-in-Oil (w/o) Emulsions. Energy Procedia, 138, 1023-1028. [Google Scholar] [CrossRef]
|
|
[20]
|
吕旭. 微波强化炼厂含油污泥破乳脱水试验研究[D]: [硕士学位论文]. 济南: 山东大学, 2020.
|
|
[21]
|
Wang, Z., Dai, N., Wang, X., et al. (2020) Early-Stage Road Property Improvements of Cold Recycled Asphalt Emulsion Mixture with Microwave Technology. Journal of Cleaner Production, 263, Article ID: 121451. [Google Scholar] [CrossRef]
|
|
[22]
|
Hu, G., Feng, H., He, P., et al. (2020) Comparative Life-Cycle Assessment of Traditional and Emerging Oily Sludge Treatment Approaches. Journal of Cleaner Production, 251, Article ID: 119594. [Google Scholar] [CrossRef]
|
|
[23]
|
刘念汝, 王光华, 李文兵, 等. 城市污泥微波干化及污染物析出特性研究[J]. 工业安全与环保, 2016, 42(7): 80-83.
|
|
[24]
|
曾恩. 污泥防粘附与两级节能干燥系统研究[D]: [硕士学位论文]. 南昌: 南昌航空大学, 2018.
|
|
[25]
|
苏文湫. 微波干燥技术处理市政污泥实验研究[J]. 价值工程, 2016, 35(17): 105-107.
|
|
[26]
|
黄永锋. 含油污泥脱水-干化技术研究与应用[J]. 化工管理, 2017(4): 192-194.
|
|
[27]
|
Luo, J., Lin, J., Ma, R., et al. (2020) Effect of Different Ash/Organics and C/H/O Ratios on Characteristics and Reaction Mechanisms of Sludge Microwave Pyrolysis to Generate Bio-Fuels. Waste Management, 117, 188-197.
|
|
[28]
|
柯萍, 曾丹林, 崔佳伟. 酸洗对褐煤-玉米芯微波共热解特性的影响[J]. 应用化工, 2020, 49(11): 2733-2736.
|
|
[29]
|
Rodriguez-Alejandro, D.A., Zaleta-Aguilar, A., Rangel-Hernández, V.H., et al. (2018) Numerical Simulation of a Pilot-Scale Reactor under Different Operating Modes: Combustion, Gasification and Pyrolysis. Biomass and Bioenergy, 116, 80-88. [Google Scholar] [CrossRef]
|
|
[30]
|
唐鑫鑫. 含油污泥低温热解过程实验研究及数值分析[D]: [硕士学位论文]. 济南: 山东大学, 2019.
|
|
[31]
|
梁坤, 周军, 吴雷, 等. 低变质煤微波热解数值模拟研究[J]. 煤炭转化, 2020, 43(4): 20-28.
|
|
[32]
|
Yu, S., Duan, Y., Zhou, X., et al. (2019) Three-Dimensional Simulation of a Novel Microwave-Assisted Heating Device for Methyl Ricinoleate Pyrolysis. Applied Thermal Engineering, 153, 341-351. [Google Scholar] [CrossRef]
|