|
[1]
|
Yang, Y., Zhang, Z., Zhuo, L., Chen, D.-P. and Li, W.-G. (2018) The Spectrum of Biopsy-Proven Glomerular Disease in China: A Systematic Review. Chinese Medical Journal, 131, 731-735. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Roberts, I.S. (2014) Pathology of IgA Nephropathy. Nature Reviews Nephrology, 10, 445-454.
|
|
[3]
|
黎磊石, 刘志红, 张馨. IgA肾病[M]//黎磊石, 刘志红. 中国肾脏病学. 北京: 人民军医出版社, 2008: 442-464.
|
|
[4]
|
Zhai, Y., Qi, Y., Long, X., Dou, Y., Liu, D., Cheng, G.Y., et al. (2019) Elevated hsa-miR-590-3p Expression Down-Regulates HMGB2 Expression and Contributes to the Severity of IgA Nephropathy. Journal of Cellular and Molecular Medicine, 23, 7299-7309. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Wehbi, B., Oblet, C., Boyer, F., Huard, A., Druilhe, A., Paraf, F., et al. (2019) Mesangial Deposition Can Strongly Involve Innate-Like IgA Molecules Lacking Affinity Maturation. Journal of the American Society of Nephrology, 30, 1238-1249. [Google Scholar] [CrossRef]
|
|
[6]
|
Launay, P., Grossetête, B., Arcos-Fajardo, M., Gaudin, E., Torres, S.P., Beaudoin, L., et al. (2000) Fcα Receptor (CD89) Mediates the Development of Immunoglobulin A (IgA) Nephropathy (Berger’s Disease). Evidence for Pathogenic Soluble Receptor-Iga Complexes in Patients and CD89 Transgenic Mice. Journal of Experimental Medicine, 191, 1999-2009. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Wang, C., Ye, M., Zhao, Q., Xia, M., Liu, D., He, L., et al. (2019) Loss of the Golgi Matrix Protein 130 Cause Aberrant IgA1 Glycosylation in IgA Nephropathy. American Journal of Nephrology, 49, 307-316. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Zhong, Z., Feng, S., Shi, D., Xu, R., Yin, P., Wang, M., et al. (2019) Association of FCRL3 Gene Polymorphisms with IgA Nephropathy in a Chinese Han Population. DNA and Cell Biology, 38, 1155-1165. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Zheng, N., Fan, J., Wang, B., Wang, D., Feng, P., Yang, Q., et al. (2017) Expression Profile of BAFF in Peripheral Blood from Patients of IgA Nephropathy: Correlation with Clinical Features and Streptococcus Pyogenes Infection. Molecular Medicine Reports, 15, 1925-1935. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Johnston, J.J. and Douglas, R. (2018) Adentonsillar Microbiome: An Update. Postgraduate Medical Journal, 94, 398-403. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Coppo, R. (2015) The Intestine-Renal Connection in IgA Nephropathy. Nephrology Dialysis Transplantation, 30, 360-366. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Magistroni, R., D’Agati, V.D., Appel, G.B. and Kiryluk, K. (2015) New Developments in the Genetics, Pathogenesis, and Therapy of IgA Nephropathy. Kidney International, 88, 974-989. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Suzuki, H., Kiryluk, K., Novak, J., Moldoveanu, Z., Herr, A.B., Renfrow, M.B., et al. (2011) The Pathophysiology of IgA Nephropathy. Journal of the American Society of Nephrology, 22, 1795-1803. [Google Scholar] [CrossRef]
|
|
[14]
|
Wyatt, R.J. and Julian, B.A. (2013) IgA Nephropathy. The New England Journal of Medicine, 368, 2402-2414. [Google Scholar] [CrossRef]
|
|
[15]
|
Smith, A.C., Molyneux, K., Feehally, J. and Barratt, J. (2006) O-Glycosylation of Serum IgA1 Antibodies against Mucosal and Systemic Antigens in IgA Nephropathy. Journal of the American Society of Nephrology, 17, 3520-3528. [Google Scholar] [CrossRef]
|
|
[16]
|
Novak, J., Moldoveanu, Z., Julian, B.A., Raska, M., Wyatt, R.J., Suzuki, Y., et al. (2011) Aberrant Glycosylation of IgA1 and Anti-Glycan Antibodies in IgA Nephropathy: Role of Mucosal Immune System. Advances in Oto-Rhino-Laryngology, 72, 60-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Hooper, L.V. and Gordon, J.I. (2001) Commensal Host-Bacterial Relationships in the Gut. Science, 292, 1115-1118. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Anders, H.J., Andersen, K. and Stecher, B. (2013) The Intestinal Microbiota, A Leaky Gut, and Abnormal Immunity in Kidney Disease. Kidney International, 83, 1010-1016. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Bouskra, D., Brézillon, C., Bérard, M., Werts, C., Varona, R., Gomperts Boneca, I., et al. (2008) Lymphoid Tissue Genesis Induced by Commensals through NOD1 Regulates Intestinal Homeostasis. Nature, 456, 507-510. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Mahmoodpoor, F., Rahbar Saadat, Y., Barzegari, A., Ardalan, M. and Vahed, S.Z. (2017) The Impact of Gut Microbiota on Kidney Function and Pathogenesis. Biomedicine & Pharmacotherapy, 93, 412-419. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
De Angelis, M., Montemurno, E., Piccolo, M., Vannini, L., Lauriero, G., Maranzano, V., et al. (2014) Microbiota and Metabolome Associated with Immunoglobulin a Nephropathy (IgAN). PLoS ONE, 9, e99006. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Bunker, J.J. and Albert, B. (2018) IgA Responses to Microbiota. Immunity, 49, 211-224. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Piccolo, M., De Angelis, M., Lauriero, G., Montemurno, E., Di Cagno, R., Gesualdo, L., et al. (2015) Salivary Microbiota Associated with Immunoglobulin a Nephropathy. Microbial Ecology, 70, 557-565. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Yoon, H.J., Shin, J.H., Yang, S.H., Chae, D.-W., Kim, H., Lee, D.-S., et al. (2003) Association of the CD14 Gene-159C Polymorphism with Progression of IgA Nephropathy. Journal of Medical Genetics, 40, 104-108. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Qin, W., Zhong, X., Fan, J.M., Zhang, Y.J., Liu, X.R. and Ma, X.Y. (2008) External Suppression Causes the Low Expression of the Cosmc Gene in IgA Nephropathy. Nephrology Dialysis Transplantation, 23, 1608-1614. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Nakabayashi, I., Nakamura, M., Kawakami, K., Ohta, T., Kato, I., Uchida, K., et al. (2011) Effects of Synbiotic Treatment on Serum Level of Pcresol in Haemodialysis Patients: A Preliminary Study. Nephrology Dialysis Transplantation, 26, 1094-1098. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Rossi, M., Johnson, D.W., Morrison, M., Pascoe, E.M., Coombes, J.S., Forbes, J.M., et al. (2016) Synbiotics Easing Renal Failure by Improving Gut Microbiology (SYNERGY): A Randomized Trial. Clinical Journal of the American Society of Nephrology, 11, 223-231. [Google Scholar] [CrossRef]
|
|
[28]
|
Chemouny, J.M., Gleeson, P.J., Abbad, L., Lauriero, G., Boedec, E., Le Roux, K., et al. (2019) Modulation of the Microbiota by Oral Antibiotics Treats Immunoglobulin a Nephropathy in Humanized Mice. Nephrology Dialysis Transplantation, 34, 1135-1144. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Knoppova, B., Reily, C., Maillard, N., Rizk, D.V., Moldoveanu, Z., Mestecky, J., et al. (2016) The Origin and Activities of IgA1-Containing Immune Complexes in IgA Nephropathy. Frontiers in Immunology, 12, 117-142. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Wang, L., Li, X.Y., Shen, H.C., Mao, N., Wang, H.L., Cui, L.K., et al. (2016) Bacterial IgA Protease-Mediated Degradation of agIgA1 and agIgA1 Immune Complexes as a Potential Therapy for IgA Nephropathy. Scientific Reports, 6, Article No. 30964. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Smerud, H.K., Bárány, P., Lindstrom, K., Fernström, A., Sandell, A., Påhlsson, P., et al. (2011) New Treatment for IgA Nephropathy: Enteric Budesonide Targeted to the Ileocecal Region Ameliorates Proteinuria. Nephrology Dialysis Transplantation, 26, 3237-3242. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Filiopoulos, V. and Vlassopoulos, D. (2012) Steroids with Local Enteric Action in IgA Nephropathy and the Association between Kidney and Bowel Disease. Nephrology Dialysis Transplantation, 27, 1265-1266. [Google Scholar] [CrossRef] [PubMed]
|