|
[1]
|
Li, D., Li, W., Chen, Y., Liu, L., Ma, D., Wang, H., et al. (2018) Anti-Fibrotic Role and Mechanism of Periplaneta americana Extracts in CCl4-Induced Hepatic Fibrosis in Rats. Acta Biochimica et Biophysica Sinica, 50, 491-498. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Asrani, S.K., Devarbhavi, H., Eaton, J. and Kamath, P.S. (2019) Burden of Liver Diseases in the World. Journal of Hepatology, 70, 151-171. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Tsuchida, T. and Friedman, S.L. (2017) Mechanisms of Hepatic Stellate Cell Activation. Nature Reviews Gastroenterology & Hepatology, 14, 397-411. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Shajari, S., Saeed, A., Smith-Cortinez, N.F., Heegsma, J., Sydor, S. and Nico Faber, K. (2019) Hormone-Sensitive Lipase Is a Retinyl Ester Hydrolase in Human and Rat Quiescent Hepatic Stellate Cells. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1864, 1258-1267. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Lepreux, S. and DesmoulièRE, A. (2015) Human Liver Myofibroblasts During Development and Diseases with a Focus on Portal (myo)Fibroblasts. Frontiers in Physiology, 6, 173. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Li, D., He, L., Guo, H., Chen, H. and Shan, H. (2015) Targeting Activated Hepatic Stellate Cells (aHSCs) for Liver Fibrosis Imaging. EJNMMI Research, 5, Article No. 71. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Li, X., Wang, Y., Wang, H., Huang, C., Huang, Y. and Li, J. (2015) Endoplasmic Reticulum Stress Is the Crossroads of Autophagy, Inflammation, and Apoptosis Signaling Pathways and Participates in Liver Fibrosis. Inflammation Research, 64, 1-7. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Yoshida, K., Matsuzaki, K., Murata, M., Yamaguchi, T., Suwa, K. and Okazaki, K. (2018) Clinico-Pathological Importance of TGF-β/Phospho-Smad Signaling during Human Hepatic Fibrocarcinogenesis. Cancers, 10, 183. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Liu, Y.T., Heller, M., Meng, Z., Yu, L.-R., Tang, Y., Zhou, M., et al. (2017) Transforming Growth Factor-β (TGF-β) Directly Activates the JAK1-STAT3 Axis to Induce Hepatic Fibrosis in Coordination with the SMAD Pathway. Journal of Biological Chemistry, 292, 4302-4312. [Google Scholar] [CrossRef]
|
|
[10]
|
El-Wakeel, S.A., Rahmo, R.M. and El-Abhar, H.S. (2018) Anti-Fibrotic Impact of Carvedilol in a CCl-4 Model of Liver Fibrosis via Serum microRNA-200a/SMAD7 Enhancement to Bridle TGF-β1/EMT Track. Scientific Reports, 8, Article No. 14327. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kostallari, E., Hirsova, P., Prasnicka, A., Verma, V.K., Yaqoob, U., Wongjarupong, N., et al. (2018) Hepatic Stellate Cell-Derived Platelet-Derived Growth Factor Receptor-Alpha-Enriched Extracellular Vesicles Promote Liver Fibrosis in Mice through SHP2. Hepatology, 68, 333-348. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Ying, H.Z., Chen, Q., Zhang, W.Y., Zhang, H.-H., Ma, Y., Zhang, S.-Z., et al. (2017) PDGF Signaling Pathway in Hepatic Fibrosis Pathogenesis and Therapeutics (Review). Molecular Medicine Reports, 16, 7879-7889. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Lim, B.J., Lee, W.K., Lee, H.W., Lee, K.S., Kim, J.K., Chang, H.Y., et al. (2018) Selective Deletion of Hepatocyte Platelet-Derived Growth Factor Receptor α and Development of Liver Fibrosis in Mice. Cell Communication and Signaling, 16, Article No. 93. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Kikuchi, A., Pradhan-Sundd, T., Singh, S., Nagarajan, S., Loizos, N. and Monga, S.P. (2017) Platelet-Derived Growth Factor Receptor α Contributes to Human Hepatic Stellate Cell Proliferation and Migration. American Journal of Pathology, 187, 2273-2287. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Taniguchi, K. and Karin, M. (2018) NF-κB, Inflammation, Immunity and Cancer: Coming of Age. Nature Reviews Immunology, 18, 309-324. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Zhu, Z.X., Zhu, L.L., Cheng, Z., Zhao, X.-K., Liu, Y.-M., Fan, L.-D., et al. (2019) Cellular Mechanism of Tβ4 Intervention in Liver Fibrosis by Regulating NF-κB Signaling Pathway. European Review for Medical and Pharmacological Sciences, 23, 1279-1290. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Seki, E., De Minicis, S., Osterreicher, C.H., Kluwe, J., Osawa, Y., Brenner, D.A., et al. (2007) TLR4 Enhances TGF-β Signaling and Hepatic Fibrosis. Nature Medicine, 13, 1324-1332. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zoubek, M.E., Trautwein, C. and Strnad, P. (2017) Reversal of Liver Fibrosis: From Fiction to Reality. Best Practice & Research Clinical Gastroenterology, 31, 129-141. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Jung, Y.K. and Yim, H.J. (2017) Reversal of Liver Cirrhosis: Current Evidence and Expectations. Korean Journal of Internal Medicine, 32, 213-228. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Ezhilarasan, D., Sokal, E. and Najimi, M. (2018) Hepatic Fibrosis: It Is Time to Go with Hepatic Stellate Cell-Specific Therapeutic Targets. Hepatobiliary & Pancreatic Diseases International, 17, 192-197. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Fan, W., Liu, T., Chen, W., Hammad, S., Longerich, T., Hausser, I., et al. (2019) ECM1 Prevents Activation of Transforming Growth Factor β, Hepatic Stellate Cells, and Fibrogenesis in Mice. Gastroenterology, 157, 1352-1367.e13. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Higashi, T., Friedman, S.L. and Hoshida, Y. (2017) Hepatic Stellate Cells as Key Target in Liver Fibrosis. Advanced Drug Delivery Reviews, 121, 27-42. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Zhang, C., Liu, X.Q., Sun, H.N., Meng, X.-M., Bao, Y.-W., Zhang, H.-P, et al. (2018) Octreotide Attenuates Hepatic Fibrosis and Hepatic Stellate Cells Proliferation and Activation by Inhibiting Wnt/β-Catenin Signaling Pathway, c-Myc and cyclin D1. International Immunopharmacology, 63, 183-190. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Yu, H.X., Yao, Y., Bu, F.T., Chen, Y., Wu, Y.-T., Yang, Y., et al. (2019) Blockade of YAP Alleviates Hepatic Fibrosis through Accelerating Apoptosis and Reversion of Activated Hepatic Stellate Cells. Molecular Immunology, 107, 29-40. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Ma, P.F., Gao, C.C., Yi, J., Zhao, J.-L., Liang, S.-Q., Zhao, Y., et al. (2017) Cytotherapy with M1-Polarized Macrophages Ameliorates Liver Fibrosis by Modulating Immune Microenvironment in Mice. Journal of Hepatology, 67, 770-779. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Moroni, F., Dwyer, B.J., Graham, C., Pass, C., Bailey, L., Ritchie, L, et al. (2019) Safety Profile of Autologous Macrophage Therapy for Liver Cirrhosis. Nature Medicine, 25, 1560-1565. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Gao, B., Radaeva, S. (2013) Natural Killer and Natural Killer T Cells in Liver Fibrosis. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1832, 1061-1069. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Wen, J., Zhou, Y., Wang, J., Chen, J., Yan, W., Wu, J., et al. (2017) Retracted Article: Interactions between Th1 Cells and Tregs Affect Regulation of Hepatic Fibrosis in biliary atresia through the IFN-γ/STAT1 Pathway. Cell Death Differ, 24, 997-1006. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
de Oliveira da Silva, B., Ramos, L.F. and Moraes, K. (2017) Molecular Interplays in Hepatic Stellate Cells Apoptosis, Senescence and Phenotype Reversion as Cellular Connections That Modulates Liver Fibrosis. Cell Biology International, 41, 946-959. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Ding, Q., Xie, X.L., Wang, M.M., Yin, J., Tian, J.-M., Jiang, X.-Y., et al. (2019) The Role of the Apoptosis-Related Protein BCL-B in the Regulation of Mitophagy in Hepatic Stellate Cells during the Regression of Liver Fibrosis. Experimental & Molecular Medicine, 51, 1-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Tsuchida, T. (2019) Mechanisms of Hepatic Stellate Cell Activation as a Therapeutic Target for the Treatment of Non-Alcoholic Steatohepatitis. Nihon Yakurigaku Zasshi, 154, 203-209. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Panebianco, C., Oben, J.A., Vinciguerra, M. and Pazienza, V. (2017) Senescence in Hepatic Stellate Cells as a Mechanism of Liver Fibrosis Reversal: A Putative Synergy between Retinoic acid and PPAR-Gamma Signalings. Clinical and Experimental Medicine, 17, 269-280. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Meng, D., Li, Z., Wang, G., Ling, L., Wu, Y. and Zhang, C. (2018) Carvedilol Attenuates Liver Fibrosis by Suppressing Autophagy and Promoting Apoptosis in Hepatic Stellate Cells. Biomedicine & Pharmacotherapy, 108, 1617-1627. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Zhao, J., Han, M., Zhou, L., Liang, P., Wang, Y., Feng, S., et al. (2020) TAF and TDF Attenuate Liver Fibrosis through NS5ATP9, TGFβ1/Smad3, and NF-κB/NLRP3 Inflammasome Signaling Pathways. Hepatology International, 14, 145-160. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Rockey, D.C. (2016) Liver Fibrosis Reversion after Suppression of Hepatitis B Virus. Clinics in Liver Disease, 20, 667-679. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Chen, Q., Chen, L., Kong, D., Shao, J., Wu, L. and Zheng, S. (2016) Dihydroartemisinin Alleviates Bile Duct Ligation-Induced Liver Fibrosis and Hepatic Stellate Cell Activation by Interfering with the PDGF-βR/ERK Signaling Pathway. International Immunopharmacology, 34, 250-258. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Zhang, X.L., Chen, Z.N., Huang, Q.F., Bai, F.-C., Nie, J.-L., Lu, S.-J., et al. (2018) Methyl Helicterate Inhibits Hepatic Stellate Cell Activation through Modulation of Apoptosis and Autophagy. Cellular Physiology and Biochemistry, 51, 897-908. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Kuo, L.M., Chen, P.J., Sung, P.J., Chang, Y.-C., Ho, C.-T, Wu, Y.-H., et al. (2018) The Bioactive Extract of Pinnigorgia sp. Induces Apoptosis of Hepatic Stellate Cells via ROS-ERK/JNK-Caspase-3 Signaling. Marine Drugs, 16, Article No. 19. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Cheng, Q., Li, C., Yang, C.F., Zhong, Y.J., Wu, D., Shi, L., et al. (2019) Methyl Ferulic Acid Attenuates Liver Fibrosis and Hepatic Stellate Cell Activation through the TGF-β1/Smad and NOX4/ROS Pathways. Chemico-Biological Interactions, 299, 131-139. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Huang, Y., Huang, D., Weng, J., Zhang, S., Zhang, Q., Mai, Z., et al. (2016) Effect of Reversine on Cell Cycle, Apoptosis, and Activation of Hepatic Stellate Cells. Molecular and Cellular Biochemistry, 423, 9-20. [Google Scholar] [CrossRef] [PubMed]
|