|
[1]
|
Ma, Y., Wang, X.L., Jia, Y.S., et al. (2014) Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations. Chemical Review, 114, 9987-10043. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Bai, Y., Mora-Seró, I., De Angelis, F., et al. (2014) Titanium Dioxide Nanomaterials for Photovoltaic Applications. Chemical Review, 114, 10095-10130. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Bai, J. and Zhou, B.X. (2014) Titanium Dioxide Nanomaterials for Sensor Applications. Chemical Review, 114, 10131- 10176. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Ramya, S., RuthNithila, S.D., George, R.P., et al. (2013) Antibacterial Studies on Eu-Ag Codoped TiO2 Surfaces. Ceramics International, 39, 1695-1705. [Google Scholar] [CrossRef]
|
|
[5]
|
Méndez-Medrano, M.G., Kowalska, E., Ohtani, B., et al. (2020) Heterojunction of CuO Nanoclusters with TiO2 for Photo-Oxidation of Organic Compounds and for Hy-drogen Production. The Journal of Chemical Physics, 153, Article ID: 034705. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Kaplan, R., Erjavec, B., Dražić, G., et al. (2016) Simple Synthesis of Ana-tase/Rutile/Brookite TiO2 Nanocomposite with Superior Mineralization Potential for Photocatalytic Degradation of Water Pollutants. Applied Catalysis B: Environmental, 181, 465-474. [Google Scholar] [CrossRef]
|
|
[7]
|
Ni, M., Leung, M.K.H., Leung, D.Y.C., et al. (2007) A Review and Recent Developments in Photocatalytic Water-Splitting Using TiO2 for Hydrogen Production. Renewable Sustainable Energy Review, 11, 401-425. [Google Scholar] [CrossRef]
|
|
[8]
|
Liu, L., Zhao, H.L., Andino, J.M., et al. (2012) Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry. ACS Catalysis, 2, 1817- 1828. [Google Scholar] [CrossRef]
|
|
[9]
|
Wang, C., Sun, Z., Zheng, Y., et al. (2019) Recent Progress in Visible Light Photocatalytic Conversion of Carbon Dioxide. Journal of Ma-terials Chemistry A, 7, 865-887. [Google Scholar] [CrossRef]
|
|
[10]
|
Di Paola, A., Bellardita, M. and Palmisano, L. (2013) Brookite, the Least Known TiO2 Photocatalyst. Catalysts, 3, 36-73. [Google Scholar] [CrossRef]
|
|
[11]
|
Monai, M., Montini, T. and Fornasiero, P. (2017) Brookite: Nothing New under the Sun? Catalysts, 7, 304-322. [Google Scholar] [CrossRef]
|
|
[12]
|
Tran, H.T.T., Kosslick, H., Ibad, M.F., et al. (2017) Photocatalytic Per-formance of Highly Active Brookite in the Degradation of Hazardous Organic Compounds Compared to Anatase and Rutile. Applied Catalysis B: Environmental, 200, 647-658. [Google Scholar] [CrossRef]
|
|
[13]
|
Vequizo, J.J.M., Matsunaga, H., Ishiku, T., et al. (2017) Trap-ping-Induced Enhancement of Photocatalytic Activity on Brookite TiO2 Powders: Comparison with Anatase and Rutile TiO2 Powders. ACS Catalysis, 7, 2644-2651. [Google Scholar] [CrossRef]
|
|
[14]
|
Choi, M., Lim, J., Baek, M., et al. (2017) Investigating the Unre-vealed Photocatalytic Activity and Stability of Nanostructured Brookite TiO2 Filmas an Environmental Photocatalyst. ACS Applied Materials & Interfaces, 9, 16252-16260. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Kolesnik, I.V., Kozlov, D.A., Poluboyarinov, A.S., et al. (2019) Non-Classical Growth of Brookite Nanorods. CrystEngComm, 21, 5673-5681. [Google Scholar] [CrossRef]
|
|
[16]
|
孙奉玉, 吴鸣, 李文钊, 等. 二氧化钛的尺寸与光催化活性的关系[J]. 催化学报, 1998, 19(3): 229-233.
|
|
[17]
|
唐玉朝, 李薇, 胡春, 等. TiO2形态结构与光催化活性关系的研究[J]. 化学进展, 2003, 15(5): 379-384.
|
|
[18]
|
Allen, N.S., Mahdjoub, N., Vishnyakov, V., et al. (2018) The Effect of Crystal-line Phase (Anatase, Brookite and Rutile) and Size on the Photocatalytic Activity of Calcined Polymorphic Titanium Di-oxide (TiO2). Polymer Degradation and Stability, 150, 31-36. [Google Scholar] [CrossRef]
|
|
[19]
|
Boppella, R., Basak, P. and Manorama, S.V. (2012) Viable Method for the Synthesis of Biphasic TiO2 Nanocrystals with Tunable Phase Composition and Enabled Visi-ble-Light Photocatalytic Performance. ACS Applied Materials & Interfaces, 4, 1239-1246. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Yan, M., Chen, F., Zhang, J., et al. (2005) Preparation of Controllable Crystalline Titania and Study on the Photocatalytic Properties. The Journal of Physical Chemistry B, 109, 8673-8678. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Jiao, Y.C., Chen, F. and Zhao, B. (2012) Anatase Grain Loaded Brookite Nanoflower Hybrid with Superior Photocatalytic Activity for Organic Degradation. Colloids and Surfaces A: Physico-chemical and Engineering Aspects, 402, 66-67. [Google Scholar] [CrossRef]
|
|
[22]
|
Shen, X.J., Tian, B.Z. and Zhang, J.L. (2013) Tailored Preparation of Titania with Controllable Phases of Anatase and Brookite by an Alkalescent Hydrothermal Route. Catalysis Today, 201, 151-158. [Google Scholar] [CrossRef]
|
|
[23]
|
Kandiel, T.A., Feldhoff, A. and Robben, L. (2010) Tailored Tita-nium Dioxide Nanomaterials: Anatase Nanoparticles and Brookite Nanorods as Highly Active Photocatalysts. Chemistry of Materials, 22, 2050-2060. [Google Scholar] [CrossRef]
|
|
[24]
|
Kandiel, T.A., Robben, L., Alkaim, A., et al. (2013) Brookite versus Ana-tase TiO2 Photocatalysts: Phase Transformations and Photocatalytic Activities. Photochemical & Photobiological Scienc-es, 12, 602-609. [Google Scholar] [CrossRef]
|
|
[25]
|
Zou, Y.L., Li, Y., Lian, X.X., et al. (2020) Controllable Hydrothermal Synthesis of Single-Phase Brookite TiO2. Applied Physics A, 126, 618-627. [Google Scholar] [CrossRef]
|
|
[26]
|
Ohno, Y., Tomita, K., Komatsubara, Y., et al. (2011) Pseu-do-Cube Shaped Brookite (TiO2) Nanocrystals Synthesized by an Oleate-Modified Hydrothermal Growth Method. Crystal Growth & Design, 11, 4831-4836. [Google Scholar] [CrossRef]
|
|
[27]
|
Hu, W.B., Li, L.P., Li, G.S., et al. (2009) High-Quality Brookite TiO2 Flowers: Synthesis, Characterization, and Dielectric Performance. Crystal Growth and Design, 9, 3676-3682. [Google Scholar] [CrossRef]
|
|
[28]
|
Zhao, B., Lin, L. and He, D.N. (2013) Phase and Morphological Transi-tions of Titania/Titanate Nanostructures from an Acid to an Alkali Hydrothermal Environment. Journal of Materials Chemistry A, 1, 1659-1668. [Google Scholar] [CrossRef]
|
|
[29]
|
Cerro-Prada, E., García-Salgado, S., Quijano, M.Á., et al. (2019) Con-trolled Synthesis and Microstructural Properties of Sol-Gel TiO2 Nanoparticles for Photocatalytic Cement Composites. Nanomaterials, 9, 26. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Tompsett, G.A., Bowmaker, G.A., Cooneyet, R.P., et al. (1995) The Raman Spectrum of Brookite, TiO2 (Pbca, Z = 8). Journal of Raman Spectroscopy, 26, 57-62. [Google Scholar] [CrossRef]
|
|
[31]
|
Iliev, M.N., Hadjiev, V.G. and Litvinchuk, A.P. (2013) Raman and Infrared Spectra of Brookite (TiO2): Experiment and Theory. Vibrational Spectroscopy, 64, 148-152. [Google Scholar] [CrossRef]
|
|
[32]
|
Alemany, L.J., Bañares, M.A., Pardo, E., et al. (2000) Mor-phological and Structural Characterization of a Titanium Dioxide System. Materials Characterization, 44, 271-275. [Google Scholar] [CrossRef]
|
|
[33]
|
Mangum, J.S., Chan, L.H., Schmidt, U., et al. (2018) Cor-relative Raman Spectroscopy and Focused Ion Beam for Targeted Phase Boundary Analysis of Titania Polymorphs. Ul-tramicroscopy, 188, 48-51. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Zhang, H. and Banfield, J. (2000) Understanding Polymorphic Phase Transformation Behavior during Growth of Nanocrystalline Aggregates: Insights from TiO2. Journal of Physical Chemistry B, 104, 3481-3487. [Google Scholar] [CrossRef]
|
|
[35]
|
Zhu, K., Zhang, M., Hong, J., et al. (2005) Size Effect on Phase Transition Sequence of TiO2 Nanocrystal. Materials Science and Engineering A, 403, 87-93. [Google Scholar] [CrossRef]
|
|
[36]
|
谢耀, 邹云玲, 张高尚, 等. 单一相板钛矿TiO2的制备及光催化性能研究[J]. 纳米技术, 2019, 9(1): 10-16.
|
|
[37]
|
Serpone, N., Lawless, D. and Khairutdinov, R. (1995) Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Particles: Size Quantization or Direct Transitions in This Indi-rect Semiconductor. Journal of Physical Chemistry, 99, 16646-16654. [Google Scholar] [CrossRef]
|
|
[38]
|
Mo, S.D. and Ching, W.Y. (1995) Electronic and Optical Properties of Three Phases of Titanium Dioxide: Rutile, Anatase and Brookite. Physical Review B, 51, 13023-13032. [Google Scholar] [CrossRef]
|
|
[39]
|
Landmann, M., Rauls, E. and Schmidt, W.G. (2012) The Elec-tronic Structure and Optical Response of Rutile, Anatase and Brookite TiO2. Journal of Physics: Condensed Matter, 24, 195503-195508. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Bellardita, M., Di Paola, A., Megna, B., et al. (2017) Abso-lute Crystallinity and Photocatalytic Activity of Brookite TiO2 Samples. Applied Catalysis B: Environmental, 201, 150-158. [Google Scholar] [CrossRef]
|