|
[1]
|
Jain, S., Wheeler, J.R., Walters, R.W., et al. (2016) ATPase-Modulated Stress Granules Contain a Diverse Proteome and Substructure. Cell, 164, 487-498. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Molliex, A., Temirov, J., Lee, J., et al. (2015) Phase Separation by Low Complexity Domains Promotes Stress Granule Assembly and Drives Pathological Fibrillization. Cell, 163, 123-133. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Wheeler, J.R., Matheny, T., Jain, S., et al. (2016) Distinct Stages in Stress Granule Assembly and Disassembly. eLife, 5, e18413. [Google Scholar] [CrossRef]
|
|
[4]
|
Kedersha, N., Ivanov, P. and Anderson, P. (2013) Stress Granules and Cell Signaling: More than Just a Passing Phase? Trends in Biochemical Sciences, 38, 494-506. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Pothof, J., Verkaik, N.S., Hoeijmakers, J.H., et al. (2009) MicroRNA Responses and Stress Granule Formation Modulate the DNA Damage Response. Cell Cycle, 8, 3462-3468. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Buchan, J.R. (2014) mRNP Granules: Assembly, Function, and Connections with Disease. RNA Biology, 11, 1019-1030. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Thomas, M.G., Loschi, M., Desbats, M.A. and Boccaccio, G.L. (2011) RNA Granules: The Good, the Bad and the Ugly. Cellular Signalling, 23, 324-234. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Aulas, A. and Vande Velde, C. (2015) Alterations in Stress Granule Dynamics Driven by TDP-43 and FUS: A Link to Pathological Inclusions in ALS? Frontiers in Cellular Neuroscience, 9, 423. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Buchan, J.R., Yoon, J.H. and Parker, R. (2011) Stress-Specific Composition, Assembly and Kinetics of Stress Granules in Saccharomyces cerevisiae. Journal of Cell Science, 124, 228-239. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Holcik, M. (2015) Could the eIF2α-Independent Translation Be the Achilles Heel of Cancer? Frontiers in Oncology, 5, 264. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Baltzis, D., Pluquet, O., Papadakis, A.I., et al. (2007) The eIF2alpha Kinases PERK and PKR Activate Glycogen Synthase Kinase 3 to Promote the Proteasomal Degradation of p53. The Journal of Biological Chemistry, 282, 31675-31687. [Google Scholar] [CrossRef]
|
|
[12]
|
Pelletier, J., Graff, J., Ruggero, D. and Sonenberg, N. (2015) Targeting the eIF4F Translation Initiation Complex: A Critical Nexus for Cancer Development. Cancer Research, 75, 250-263. [Google Scholar] [CrossRef]
|
|
[13]
|
Wippich, F., Bodenmiller, B., Trajkovska, M.G., et al. (2013) Dual Specificity Kinase DYRK3 Couples Stress Granule Condensation/Dissolution to mTORC1 Signaling. Cell, 152, 791-805. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Thedieck, K., Holzwarth, B., Prentzell, M.T., et al. (2013) Inhibition of mTORC1 by Astrin and Stress Granules Prevents Apoptosis in Cancer Cells. Cell, 154, 859-874. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Tourrière, H., Chebli, K., Zekri, L., et al. (2003) The RasGAP-Associated Endoribonuclease G3BP Assembles Stress Granules. The Journal of Cell Biology, 160, 823-831. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Solomon, S., Xu, Y., Wang, B., et al. (2007) Distinct Structural Features of Caprin-1 Mediate Its Interaction with G3BP-1 and Its Induction of Phosphorylation of Eukaryotic Translation Initiation Factor 2alpha, Entry to Cytoplasmic Stress Granules, and Selective Interaction with a Subset of mRNAs. Molecular and Cellular Biology, 27, 2324-2342. [Google Scholar] [CrossRef]
|
|
[17]
|
Kedersha, N., Panas, M.D., Achorn, C.A., et al. (2016) G3BP-Caprin1-USP10 Complexes Mediate Stress Granule Condensation and Associate with 40S Subunits. The Journal of Cell Biology, 212, 845-860. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Nott, T.J., Petsalaki, E., Farber, P., et al. (2015) Phase Transition of a Disordered Nuage Protein Generates Environmentally Responsive Membraneless Organelles. Molecular Cell, 57, 936-947. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Boeynaems, S., Alberti, S., Fawzi, N.L., et al. (2018) Protein Phase Separation: A New Phase in Cell Biology. Trends in Cell Biology, 28, 420-435. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Mahboubi, H. and Stochaj, U. (2017) Cytoplasmic Stress Granules: Dynamic Modulators of Cell Signaling and Disease. Biochimica et Biophysica Acta, 1863, 884-895. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Mateju, D., Eichenberger, B., Eglinger, J., Roth, G. and Chao, J.A. (2020) Single-Molecule Imaging Reveals Translation of mRNAs Localized to Stress Granules. Cell, 183, 1801-1812. [Google Scholar] [CrossRef]
|
|
[22]
|
Eisinger-Mathason, T.S., Andrade, J., Groehler, A.L., et al. (2008) Codependent Functions of RSK2 and the Apoptosis-Promoting Factor TIA-1 in Stress Granule Assembly and Cell Survival. Molecular Cell, 31, 722-736. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Shelkovnikova, T.A., Dimasi, P., Kukharsky, M.S., et al. (2017) Chronically Stressed or Stress-Preconditioned Neurons Fail to Maintain Stress Granule Assembly. Cell Death & Disease, 8, e2788. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Wang, F., Li, J., Fan, S., et al. (2020) Targeting Stress Granules: A Novel Therapeutic Strategy for Human Diseases. Pharmacological Research, 161, 105143. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
McCormick, C. and Khaperskyy, D.A. (2017) Translation Inhibition and Stress Granules in the Antiviral Immune Response. Nature Reviews Immunology, 17, 647-660. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Anderson, P., Kedersha, N. and Ivanov, P. (2015) Stress Granules, P-Bodies and Cancer. Biochimica et Biophysica Acta, 1849, 861-870. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Merchant, M.L., Perkins, B.A., Boratyn, G.M., et al. (2009) Urinary Peptidome May Predict Renal Function Decline in Type 1 Diabetes and Microalbuminuria. Journal of the American Society of Nephrology, 20, 2065-2074. [Google Scholar] [CrossRef]
|
|
[28]
|
Sidrauski, C., Acosta-Alvear, D., Khoutorsky, A., et al. (2013) Pharmacological Brake-Release of mRNA Translation Enhances Cognitive Memory. eLife, 2, e00498. [Google Scholar] [CrossRef]
|
|
[29]
|
Sidrauski, C., Mcgeachy, A.M., Ingolia, N.T. and Walter, P. (2015) The Small Molecule ISRIB Reverses the Effects of eIF2α Phosphorylation on Translation and Stress Granule Assembly. eLife, 4. [Google Scholar] [CrossRef]
|
|
[30]
|
Nguyen, H.G., Conn, C.S., Kye, Y., et al. (2018) Development of a Stress Response Therapy Targeting Aggressive Prostate Cancer. Science Translational Medicine, 10, eaar2036. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Mahameed, M., Boukeileh, S., Obiedat, A., et al. (2020) Pharmacological Induction of Selective Endoplasmic Reticulum Retention as a Strategy for Cancer Therapy. Nature Communications, 11, Article No. 1304. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Bugallo, R., Marlin, E., Baltanás, A., et al. (2020) Fine Tuning of the Unfolded Protein Response by ISRIB Improves Neuronal Survival in a Model of Amyotrophic Lateral Sclerosis. Cell Death & Disease, 11, Article No. 397. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Kim, H.-J., Raphael, A.R., LaDow, E.S., et al. (2014) Therapeutic Modulation of eIF2α Phosphorylation Rescues TDP-43 Toxicity in Amyotrophic Lateral Sclerosis Disease Models. Nature Genetics, 46, 152-160. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Somasekharan, S.P., El-Naggar, A., Leprivier, G., et al. (2015) YB-1 Regulates Stress Granule Formation and Tumor Progression by Translationally Activating G3BP1. The Journal of Cell Biology, 208, 913-929. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Zhang, H., Zhang, S., He, H., et al. (2012) GAP161 Targets and Downregulates G3BP to Suppress Cell Growth and Potentiate Cisplaitin-Mediated Cytotoxicity to Colon Carcinoma HCT116 Cells. Cancer Science, 103, 1848-1856. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Oi, N., Yuan, J., Malakhova, M., Luo, K., Li, Y., Ryu, J., et al. (2015) Resveratrol Induces Apoptosis by Directly Targeting Ras-GTPase-Activating Protein SH3 Domain-Binding Protein 1. Oncogene, 34, 2660-2671. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Gupta, N., Badeaux, M., Liu, Y., et al. (2017) Stress Granule-Associated Protein G3BP2 Regulates Breast Tumor Initiation. Proceedings of the National Academy of Sciences of the United States of America, 114, 1033-1038. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Gong, B., Hu, H., Chen, J., et al. (2013) Caprin-1 Is a Novel microRNA-223 Target for Regulating the Proliferation and Invasion of Human Breast Cancer Cells. Biomedicine & Pharmacotherapy, 67, 629-636. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Tan, N., Dai, L., Liu, X., et al. (2017) Upregulation of Caprin1 Expression Is Associated with Poor Prognosis in Hepatocellular Carcinoma. Pathology—Research and Practice, 213, 1563-1567. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Campanile, C., Arlt, M.J., Krämer, S.D., et al. (2013) Characterization of Different Osteosarcoma Phenotypes by PET Imaging in Preclinical Animal Models. Journal of Nuclear Medicine, 54, 1362-1368. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Qiu, Y.Q., Yang, C.W., Lee, Y.Z., et al. (2015) Targeting a Ribonucleoprotein Complex Containing the Caprin-1 Protein and the c-Myc mRNA Suppresses Tumor Growth in Mice: An Identification of a Novel Oncotarget. Oncotarget, 6, 2148-2163. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Neumann, M., Sampathu, D.M., Kwong, L.K., et al. (2006) Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. Science, 314, 130-133. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Bentmann, E., Neumann, M., Tahirovic, S., et al. (2012) Requirements for Stress Granule Recruitment of Fused in Sarcoma (FUS) and TAR DNA-Binding Protein of 43 kDa (TDP-43). The Journal of Biological Chemistry, 287, 23079-23094. [Google Scholar] [CrossRef]
|
|
[44]
|
Liu-Yesucevitz, L., Bilgutay, A., Zhang, Y.J., et al. (2010) Tar DNA Binding Protein-43 (TDP-43) Associates with Stress Granules: Analysis of Cultured Cells and Pathological Brain Tissue. PLoS ONE, 5, e13250. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Mcdonald, K.K., Aulas, A., Destroismaisons, L., et al. (2011) TAR DNA-Binding Protein 43 (TDP-43) Regulates Stress Granule Dynamics via Differential Regulation of G3BP and TIA-1. Human Molecular Genetics, 20, 1400-1410. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
François-Moutal, L., Felemban, R., Scott, D.D., et al. (2019) Small Molecule Targeting TDP-43’s RNA Recognition Motifs Reduces Locomotor Defects in a Drosophila Model of Amyotrophic Lateral Sclerosis (ALS). ACS Chemical Biology, 14, 2006-2013. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Fang, M.Y., Markmiller, S., Vu, A.Q., et al. (2019) Small-Molecule Modulation of TDP-43 Recruitment to Stress Granules Prevents Persistent TDP-43 Accumulation in ALS/FTD. Neuron, 103, 802-819.e11. [Google Scholar] [CrossRef] [PubMed]
|