|
[1]
|
Tkach, M. and Théry, C. (2016) Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell, 164, 1226-1232. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Mass, S.L., Breakefield, X.O. and Weaver, A.M. (2017) Extracellular Vesicles: Unique Intercellular Delivery Vehicles. Trends in Cell Biology, 27, 172-188. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
郑磊, 李博. 细胞外囊泡生物标志物研究现状与筛选策略[J]. 中华检验杂志, 2018, 41(11): 812-816.
|
|
[4]
|
Gordon, J. and Michel, G. (2008) Analytical Sensitivity Limits for Lateral Flow Immunoassays. Clinical Chemistry, 54, 1250-1251. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Oliveira-Rodríguez, M., López-Cobo, S., Reyburn, H.T., et al. (2016) Development of a Rapid Lateral Flow Immunoassay Test for Detection of Exosomes Previously Enriched from Cell Culture Medium and Body Fluids. Journal of Extracellular Vesicles, 5, 31803. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Oliveira-Rodríguez, M., Serrano-Pertierra, E., García, A.C., et al. (2017) Point-of-Care Detection of Extracellular Vesicles: Sensitivity Optimization and Multiple-Target Detection. Biosensors and Bioelectronics, 87, 38-45. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
López-Cobo, S., Campos-Silva, C., Moyano, A., et al. (2018) Immunoassays for Scarce Tumor-Antigens in Exosomes: Detection of the Human NKG2D-Ligand, MICA, in Tetraspanin-Containing Nanovesicles from Melanoma. Journal of Nanobiotechnology, 16, Article No. 47. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Jiang, Y., Shi, M.L., Liu, Y., et al. (2017) Aptamer/AuNP Biosensor for Colorimetric Profiling of Exosomal Proteins. Angewandte Chemie International Edition, 56, 11916-11920. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Liu, W.L., Li, J.P., Wu, Y.X., et al. (2018) Target-Induced Proximity Ligation Triggers Recombinase Polymerase Amplification and Transcription-Mediated Amplification to Detect Tumor Derived Exosomes in Nasopharyngeal Carcinoma with High Sensitivity. Biosensors and Bioelectronics, 102, 204-210. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
He, F., Liu, H., Guo, X.G., et al. (2017) Direct Exosome Quantification via Bivalent-Cholesterol-Labeled DNA Anchor for Signal Amplification. Analytical Chemistry, 89, 12968-12975. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Xia, Y.K., Liu, M.M., Wang, L.L., et al. (2017) A Visible and Colorimetric Aptasensor Based on DNA-Capped Single-Walled Carbon Nanotubes for Detection of Exosomes. Biosensors and Bioelectronics, 92, 8-15. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Wang, Y.M., Liu, J.W., Adkins, G.B., et al. (2017) Enhancement of the Intrinsic Peroxidase-Like Activity of Graphitic Carbon Nitride Nanosheets by ssDNAs and Its Application for Detection of Exosomes. Analytical Chemistry, 89, 12327-12333. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Chen, X.S., Lan, J.M., Liu, Y.X., et al. (2018) A Paper-Supported Aptasensor Based on Upconversion Luminescence Resonance Energy Transfer for the Accessible Determination of Exosomes. Biosensors and Bioelectronics, 102, 582-588. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
He, F., Wang, J., Yin, B.C. and Ye, B.C. (2018) Quantification of Exosome Based on a Copper-Mediated Signal Amplification Strategy. Analytical Chemistry, 90, 8072-8079. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Jin, D., Yang, F., Zhang, Y.L., et al. (2018) ExoAPP: Exosome-Oriented, Aptamer Nanoprobe-Enabled Surface Proteins Profiling and Detection. Analytical Chemistry, 90, 14402-14411. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Tian, Q.C., He, C.J., Liu, G.W., et al. (2018) Nanoparticle Counting by Microscopic Digital Detection: Selective Quantitative Analysis of Exosomes via Surface-Anchored Nucleic Acid Amplification. Analytical Chemistry, 90, 6556-6562. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Liu, C.C., Xu, X.N., Li, B., et al. (2018) Single-Exosome-Counting Immunoassays for Cancer Diagnostics. Nano Letters, 18, 4226-4232. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Rupert, D.L.M., Shelke, G.V., Emilsson, G., et al. (2016) Dual-Wavelength Surface Plasmon Resonance for Determining the Size and Concentration of Sub-Populations of Extracellular Vesicles. Analytical Chemistry, 88, 9980-9988. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Im H., Shao, H.L., Park, Y., et al. (2014) Label-Free Detection and Molecular Profiling of Exosomes with a Nano-Plasmonic Sensor. Nature Biotechnology, 32, 490-495. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Zong, S.F., Wang, L., Chen, C., Lu, J., et al. (2016) Facile Detection of Tumor-Derived Exosomes Using Magnetic Nanobeads and SERS Nanoprobes. Analytical Methods, 8, 5001. [Google Scholar] [CrossRef]
|
|
[21]
|
Kwizera, E.A., O’Connor, R., Vinduska, V., et al. (2018) Molecular Detection and Analysis of Exosomes Using Surface-Enhanced Raman Scattering Gold Nanorods and a Miniaturized Device. Theranostics, 8, 2722-2738. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Wang, J., Wuethrich, A., Sina, A.A.L., et al. (2020) Tracking Extracellular Vesicle Phenotypic Changes Enables Treatment Monitoring in Melanoma. Science Advances, 6, eaax3223. [Google Scholar] [CrossRef] [PubMed]
|