|
[1]
|
Tsai, P.Y., Lin, W.S., Tsai, K.T., et al. (2020) High-Frequency versus Theta Burst Transcranial Magnetic Stimulation for the Treatment of Poststroke Cognitive Impairment in Humans. Journal of Psychiatry & Neuroscience, 45, 262-270. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Nyffeler, T., Vanbellingen, T., Kaufmann, B.C., et al. (2019) Theta Burst Stimulation in Neglect after Stroke: Functional Outcome and Response Variability Origins. Brain, 142, 992-1008. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Wang, X., Mao, Z., Ling, Z., et al. (2020) Repetitive Transcranial Magnetic Stimulation for Cognitive Impairment in Alzheimer’s Disease: A Meta-Analysis of Randomized Controlled Trials. Journal of Neurology, 267, 791-801. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Gutiérrez-Muto, A.M., Castilla, J., Freire, M., et al. (2020) Theta Burst Stimulation: Technical Aspects about TMS Devices. Brain Stimulation, 13, 562-564. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Chung, S.W., Rogasch, N.C., Hoy, K.E., et al. (2018) Impact of Different Intensities of Intermittent Theta Burst Stimulation on the Cortical Properties during TMS-EEG and Working Memory Performance. Human Brain Mapping, 39, 783-802. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Folstein, M.F., Folstein, S.E. and McHugh, P.R. (1975) “Mini-Mental State”. A Practical Method for Grading the Cognitive State of Patients for the Clinician. Journal of Psychiatric Research, 12, 189-198. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Nasreddine, Z.S., Phillips, N.A., Bédirian, V., et al. (2005) The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool for Mild Cognitive Impairment. Journal of the American Geriatrics Society, 53, 695-699. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Shah, S., Vanclay, F. and Cooper, B. (1989) Improving the Sensitivity of the Barthel Index for Stroke Rehabilitation. Journal of Clinical Epidemiology, 42, 703-709. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Brem, A.K. and Sensi, S.L. (2018) Towards Combinatorial Approaches for Preserving Cognitive Fitness in Aging. Trends in Neurosciences, 41, 885-897. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Pulopulos, M., Allaert, J., Vanderhasselt, M.A., et al. (2020) Effects of HF-rTMS over the Left and Right DLPFC on Proactive and Reactive Cognitive Control. Social Cognitive and Affective Neuroscience. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Park, I.S. and Yoon, J.G. (2015) The Effect of Computer-Assisted Cognitive Rehabilitation and Repetitive Transcranial Magnetic Stimulation on Cognitive Function for Stroke Patients. The Journal of Physical Therapy Science, 27, 773-776. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Cho, H.Y., Kim, K.T. and Jung, J.H. (2015) Effects of Computer Assisted Cognitive Rehabilitation on Brain Wave, Memory and Attention of Stroke Patients: A Randomized Control Trial. The Journal of Physical Therapy Science, 27, 1029-1032. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Tan, T., Xie, J., Tong, Z., et al. (2013) Repetitive Transcranial Magnetic Stimulation Increases Excitability of Hippocampal CA1 Pyramidal Neurons. Brain Research, 1520, 23-35. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Su, H., Chen, T., Zhong, N., et al. (2020) γ-Aminobutyric Acid and Glutamate/Glutamine Alterations of the Left Prefrontal Cortex in Individuals with Methamphetamine Use Disorder: A Combined Transcranial Magnetic Stimulation-Magnetic Resonance Spectroscopy Study. Annals of Translational Medicine, 8, 347. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Shang, Y.Q., Xie, J., Peng, W., et al. (2018) Network-Wise Cerebral Blood Flow Redistribution after 20 Hz rTMS on Left Dorso-Lateral Prefrontal Cortex. European Journal of Radiology, 101, 144-148. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Hong, Y., Liu, Q., Peng, M., et al. (2020) High-Frequency Repetitive Transcranial Magnetic Stimulation Improves Functional Recovery by Inhibiting Neurotoxic Polarization of Astrocytes in Ischemic Rats. Journal of Neuroinflammation, 17, 150. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Hoy, K.E., Bailey, N., Michael, M., et al. (2016) Enhancement of Working Memory and Task-Related Oscillatory Activity Following Intermittent Theta Burst Stimulation in Healthy Controls. Cerebral Cortex, 26, 4563-4573. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Wischnewski, M. and Schutter, D.J. (2015) Efficacy and Time Course of Theta Burst Stimulation in Healthy Humans. Brain Stimulation, 8, 685-692. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Pichiorri, F., Vicenzini, E., Gilio, F., et al. (2012) Effects of Intermittent Theta Burst Stimulation on Cerebral Blood Flow and Cerebral Vasomotor Reactivity. Journal of Ultrasound in Medicine, 31, 1159-1167. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Brem, A.K., Di Iorio, R., Fried, P.J., et al. (2020) Corticomotor Plasticity Predicts Clinical Efficacy of Combined Neuromodulation and Cognitive Training in Alzheimer’s Disease. Frontiers in Aging Neuroscience, 12, 200. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Lee, J., Choi, B.H., Oh, E., et al. (2016) Treatment of Alzheimer’s Disease with Repetitive Transcranial Magnetic Stimulation Combined with Cognitive Training: A Prospective, Randomized, Double-Blind, Placebo-Controlled Study. Journal of Clinical Neurology, 12, 57-64. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
贾杰. “中枢–外周–中枢”闭环康复——脑卒中后手功能康复新理念[J]. 中国康复医学杂志, 2016, 31(11): 1180-1182.
|
|
[23]
|
Weissman, D.H., Perkins, A.S. and Woldorff, M.G. (2008) Cognitive Control in Social Situations: A Role for the Dorsolateral Prefrontal Cortex. Neuroimage, 40, 955-962. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Lee, J., Dong, S., Jeong, J., et al. (2020) Effects of Transcranial Direct Current Stimulation over the Dorsolateral Prefrontal Cortex (PFC) on Cognitive-Motor Dual Control Skills. Perceptual and Motor Skills, 127, 803-822. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Shi, D., Chen, X. and Li, Z. (2018) Diagnostic Test Accuracy of the Montreal Cognitive Assessment in the Detection of Post-Stroke Cognitive Impairment under Different Stages and Cutoffs: A Systematic Review and Meta-Analysis. Neurological Sciences, 39, 705-716. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Cotelli, M., Manenti, R., Alberici, A., et al. (2012) Prefrontal Cortex rTMS Enhances Action Naming in Progressive Non-Fluent Aphasia. European Journal of Neurology, 19, 1404-1412. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Cotelli, M., Fertonani, A., Miozzo, A., et al. (2011) Anomia Training and Brain Stimulation in Chronic Aphasia. Neuropsychological Rehabilitation, 21, 717-741. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Beltrami, D., Gagliardi, G., Rossini Favretti, R., et al. (2018) Speech Analysis by Natural Language Processing Techniques: A Possible Tool for Very Early Detection of Cognitive Decline? Frontiers in Aging Neuroscience, 10, 369. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Wang, H., Tan, L., Wang, H.F., et al. (2015) Magnetic Resonance Spectroscopy in Alzheimer’s Disease: Systematic Review and Meta-Analysis. Journal of Alzheimer’s Disease, 46, 1049-1070. [Google Scholar] [CrossRef]
|
|
[30]
|
Wang, S.Y., Wang, M., Wang, X.X., et al. (2017) Study on the Clinical Application of the MRS in the Cognitive Assessment after Stroke. European Review for Medical and Pharmacological Sciences, 21, 2437-2442.
|
|
[31]
|
Meng, N., Shi, S. and Su, Y. (2016) Proton Magnetic Resonance Spectroscopy as a Diagnostic Biomarker in Mild Cognitive Impairment Following Stroke in Acute Phase. Neuroreport, 27, 559-563. [Google Scholar] [CrossRef]
|