|
[1]
|
Frager, S.Z. and Schwartz, J.M. (2020) Hepatocellular Carcinoma: Epidemiology, Screening, and Assessment of Hepatic Reserve. Current Oncology, 27, S138-S143. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Kulik, L. and El-Serag, H.B. (2019) Epidemiology and Management of Hepatocellular Carcinoma. Gastroenterology, 156, 477-491. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
McGlynn, K.A., et al. (2020) Epidemiology of Hepatocellular Carcinoma. Hepatology (Baltimore, Md), 73, 4-13.
|
|
[4]
|
Baecker, A., Liu, X., La Vecchia, C., et al. (2018) Worldwide Incidence of Hepatocellular Carcinoma Cases Attributable to Major Risk Factors. European Journal of Cancer Prevention, 27, 205-212. [Google Scholar] [CrossRef]
|
|
[5]
|
Tacke, F. (2017) Targeting Hepatic Macrophages to Treat Liver Diseases. Journal of Hepatology, 66, 1300-1312. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Stahl, E.C., Haschak, M.J., Popovic, B., et al. (2018) Macrophages in the Aging Liver and Age-Related Liver Disease. Frontiers in Immunology, 9, 2795. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Roehlen, N., Crouchet, E. and Baumert, T. (2020) Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives. Cells, 9, 875. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Parola, M. and Pinzani, M. (2019) Liver Fibrosis: Pathophysiology, Pathogenetic Targets and Clinical Issues. Molecular Aspects of Medicine, 65, 37-55. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Slevin, E., Baiocchi, L., Wu, N., et al. (2020) Kupffer Cells: Inflammation Pathways and Cell-Cell Interactions in Alcohol-Associated Liver Disease. The American Journal of Pathology, 190, 2185-2193. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Meng, D., Qin, Y., Lu, N., et al. (2019) Kupffer Cells Promote the Differentiation of Adult Liver Hematopoietic Stem and Progenitor Cells into Lymphocytes via ICAM-1 and LFA-1 Interaction. Stem Cells International, 2019, Article ID: 4848279. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Yuan, D., García-Beccaria, M. and Heikenwalder, M. (2017) Intrinsic and Environmental Factors in Intrahepatic Cholangiocarcinoma Development. Oncoscience, 4, 117-119. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Tsujimoto, T., Kuriyama, S., Yamazaki, M., et al. (2001) Augmented Hepatocellular Carcinoma Progression and Depressed Kupffer Cell Activity in Rat Cirrhotic Livers. International Journal of Oncology, 18, 41-47. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Lahmar, Q., Keirsse, J., Laoui, D., et al. (2016) Tissue-Resident versus Monocyte-Derived Macrophages in the Tumor Microenvironment. Biochimica et Biophysica Acta, 1865, 23-34. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Wan, J., Benkdane, M., Teixeira-Clerc, F., et al. (2014) M2 Kupffer Cells Promote M1 Kupffer Cell Apoptosis: A Protective Mechanism against Alcoholic and Nonalcoholic Fatty Liver Disease. Hepatology, 59, 130-142. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Ma, P.F., Gao, C.C., Yi, J., et al. (2017) Cytotherapy with M1-Polarized Macrophages Ameliorates Liver Fibrosis by Modulating Immune Microenvironment in Mice. Journal of Hepatology, 67, 770-779. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Shan, Z. and Ju, C. (2020) Hepatic Macrophages in Liver Injury. Frontiers in Immunology, 11, 322. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Sun, Y.Y., Li, X.F., Meng, X.M., et al. (2017) Macrophage Phenotype in Liver Injury and Repair. Scandinavian Journal of Immunology, 85, 166-174. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Huan, H., Wen, X., Chen, X., et al. (2017) Sympathetic Nervous System Promotes Hepatocarcinogenesis by Modulating Inflammation through Activation of Alpha1-Adrenergic Receptors of Kupffer Cells. Brain, Behavior, and Immunity, 59, 118-134. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Byrne, C.D. and Targher, G. (2015) NAFLD: A Multisystem Disease. Journal of Hepatology, 62, S47-S64. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Younossi, Z., Anstee, Q.M., Marietti, M., et al. (2018) Global Burden of NAFLD and NASH: Trends, Predictions, Risk Factors and Prevention. Nature Reviews Gastroenterology & Hepatology, 15, 11-20. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Wu, H., Zhong, Z., Wang, A., et al. (2020) LncRNA FTX Represses the Progression of Non-Alcoholic Fatty Liver Disease to Hepatocellular Carcinoma via Regulating the M1/M2 Polarization of Kupffer Cells. Cancer Cell International, 20, 266. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Ngambenjawong, C., Gustafson, H.H. and Pun, S.H. (2017) Progress in Tumor-Associated Macrophage (TAM)-Targeted Therapeutics. Advanced Drug Delivery Reviews, 114, 206-221. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Yan, W., Liu, X., Ma, H., et al. (2015) Tim-3 Fosters HCC Development by Enhancing TGF-β-Mediated Alternative Activation of Macrophages. Gut, 64, 1593-1604. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Yu, L., Wang, Y., Shao, S., et al. (2015) B7-H1/PD-1 Blockade Therapy in Urological Malignancies: Current Status and Future Prospects. Tumori, 101, 549-554. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Wu, K., Kryczek, I., Chen, L., et al. (2009) Kupffer Cell Suppression of CD8+ T Cells in Human Hepatocellular Carcinoma Is Mediated by B7-H1/Programmed Death-1 Interactions. Cancer Research, 69, 8067-8075. [Google Scholar] [CrossRef]
|