|
[1]
|
杨琳琳, 季秀玲, 吴潇, 林连兵, 魏云林. 微生物在成矿及矿区环境修复中的应用研究现状[J]. 生命科学, 2011, 23(3): 306-310.
|
|
[2]
|
Yuan, H.P., Zhang, J.H., Lu, Z.M., Min, H. and Wu, C. (2009) Studies on Biosorption Equilib-rium and Kinetics of Cd2+ by Streptomyces sp. K33 and HL-12. Journal of Hazardous Materials, 164, 423-431. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Sari, A. and Tuzen, M. (2009) Biosorption of As(III) and As(V) from Aqueous Solution by Macrofungus (Inonotus hispidus) Biomass: Equilibrium and Kinetic Studies. Journal of Hazardous Materials, 164, 1372-1378. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Bazylinski, D.A. and Frankel, R.B. (2003) Biologically Con-trolled Mineralization in Prokaryotes. In: Dove, P.M., De Yoreo, J.J. and Weiner, S., Eds., Bazylinski & Frankel, De Gruyter, Berlin, Boston, 217-247. [Google Scholar] [CrossRef]
|
|
[5]
|
Labrenz, M., Druschel Gregory, K. and Thomsen-Ebert, T., Gilbert, B., Welch, S.A., Kemner, K.M., et al. (2000) Formation of Sphalerite (ZnS) Deposits in Natural Biofilms of Sulfate-Reducing Bacteria. Science, 290, 1744-1747. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Li, X., Wu, Y., Zhang, C., Liu, Y., Zeng, G., Tang, X., et al. (2016) Immobilizing of Heavy Metals in Sediments Contaminated by Nonferrous Metals Smelting Plant Sewage with Sulfate Reducing Bacteria and Micro Zero Valent Iron. Chemical Engineering Journal, 306, 393-400. [Google Scholar] [CrossRef]
|
|
[7]
|
Groudev, S.N., Spasova, I.I. and Georgiev, P.S. (2001) In Situ Bi-oremediation of Soils Contaminated with Radioactive Elements and Toxic Heavy Metals. International Journal of Mineral Processing, 62, 301-308. [Google Scholar] [CrossRef]
|
|
[8]
|
Jiang, W. and Fan, W. (2008) Bioremediation of Heavy Metal-Contaminated Soils by Sulfate-Reducing Bacteria. Annals of the New York Academy of Sciences, 1140, 446-454. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
吴淑杭, 周德平, 吕卫光, 姜震方, 徐亚同. 硫酸盐还原菌修复铬(Ⅵ)污染土壤研究[J]. 农业环境科学学报, 2007, 26(2): 467-471.
|
|
[10]
|
韩煦, 周天旭, 刘勇. 不同碳源对ZVI-SRB- 体系中生物活性的影响[J]. 天津工业大学学报, 2015(2): 58-63.
|
|
[11]
|
Mulopo, J. (2016) Pilot Scale Assessment of the Continuous Biological Sulphate Removal from Coal Acid Mine Effluent Using Grass Cutting as Carbon and Energy Sources. Journal of Water Process Engineering, 11, 104-109. [Google Scholar] [CrossRef]
|
|
[12]
|
Nicolova, M., Spasova, I., Georgiev, P. and Groudev, S. (2017) Microbial Removal of Toxic Metals from a Heavily Polluted Soil. Journal of Geochemical Exploration, 182, 242-246. [Google Scholar] [CrossRef]
|
|
[13]
|
张楠, 陈天虎, 周跃飞, 王进, 金杰, 黎少杰. 以秸秆为微生物碳源的尾矿原位修复: 动态实验的初步分析[J]. 矿物岩石地球化学通报, 2011, 30(3): 334-340.
|
|
[14]
|
Zhang, M., Liu, X., Li, Y., Wang, G., Wang, Z. and Wen, J. (2017) Microbial Community and Metabolic Pathway Succession Driven by Changed Nutrient Inputs in Tailings: Effects of Different Nutrients on Tailing Remediation. Scientific Reports, 7, Article No. 474. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
苏建, 曹斐姝, 宋海农, 欧孝夺, 李小明. 铝土尾矿原位微生物选培及固化试验研究[J]. 应用基础与工程科学学报, 2020, 28(5): 1224-1234.
|
|
[16]
|
Stocks-Fischer, S., Galinat, J.K. and Bang, S.S. (1999) Microbiological Precipitation of CaCO3. Soil Biology & Biochemistry, 31, 1563-1571. [Google Scholar] [CrossRef]
|
|
[17]
|
Benini, S., Rypniewski, W.R., Wilson, K.S., Miletti, S., Ciurli, S. and Mangani, S. (1999) A New Proposal for Urease Mechanism Based on the Crystal Structures of the Native and Inhibited Enzyme from Bacillus Pasteurii: Why Urea Hydrolysis Costs Two Nickels. Structure, 7, 205-216. [Google Scholar] [CrossRef]
|
|
[18]
|
Chen, F., Deng, C., Song, W., Zhang, D., Al-Misned, F.A., Golam Mortuza, M., et al. (2016) Biostabilization of Desert Sands Using Bacterially Induce Dcalcite Precipitation. Geomicrobiology Journal, 33, 243-249. [Google Scholar] [CrossRef]
|
|
[19]
|
欧孝夺, 莫鹏, 苏建, 苏建, 彭远胜. 生石灰与微生物共同固化过湿性铝尾黏土试验研究[J]. 岩土工程学报, 2020, 42(4): 624-631.
|
|
[20]
|
Fujita, Y., Taylor, J.L., Wendt, L.M., Reed, D.W. and Smith, R.W. (2010) Evaluating the Potential of Native Ureolytic Microbes to Remediate a 90Sr Contaminated Environment. Environmental Science & Technology, 44, 7652-7658. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Achal, V., Pan, X., Zhang, D. and Fu, Q. (2012) Bioremediation of Pb-Contaminated Soil Based on Microbially Induced Calcite Precipitation. Journal of Microbiology & Biotechnology, 22, 244-247. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Amoozegar, M.A., Ghazanfari, N. and Didari, M. (2012) Lead and Cadmium Bioremoval by Halomonas sp. an Exopolysaccharide-Producing Halophilic Bacterium. Progress in Biological Sciences, 2, 1-11.
|
|
[23]
|
Achal, V., Pan, X. and Zhang, D. (2011) Remediation of Copper-Contaminated Soil by Kocuria flava CR1, Based on Microbially Induced Calcite Precipitation. Ecological Engineering, 37, 1601-1605. [Google Scholar] [CrossRef]
|
|
[24]
|
许燕波, 钱春香, 陆兆文. 微生物矿化修复重金属污染土壤[J]. 环境工程学报, 2013, 7(7): 2763-2768.
|
|
[25]
|
Kumari, D., Pan, X., Lee, D.J. and Achal, V. (2014) Immobilization of Cadmium in Soil by Microbially Induced Carbonate Precipitation with Exiguobacterium undae at Low Temperature. International Biodeterioration & Biodegradation, 94, 98-102. [Google Scholar] [CrossRef]
|
|
[26]
|
Kumari, D., Li, M., Pan, X. and Xin-Yi, Q. (2014) Effect of Bacterial Treatment on Cr(VI) Remediation from Soil and Subsequent Plantation of Pisum sativum. Ecological Engi-neering, 73, 404-408. [Google Scholar] [CrossRef]
|
|
[27]
|
Achal, V., Pan, X., Fu, Q. and Zhang, D. (2012) Biomineralization Based Remediation of As(III) Contaminated Soil by Sporosarcina ginsengisoli. Journal of Hazardous Materials, 201, 178-184. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Kang, C.H., Choi, J.H., Noh, J.G., Kwak, D.Y., Han, S.H. and So, J.-S. (2014) Microbially Induced Calcite Precipitation-Based Sequestration of Strontium by Sporosarcina pasteurii WJ-2. Applied Biochemistry and Biotechnology, 174, 2482-2491. [Google Scholar] [CrossRef] [PubMed]
|