|
[1]
|
Tahara, Y. and Shibata, S. (2016) Circadian Rhythms of Liver Physiology and Disease: Experimental and Clinical Evidence. Nature Reviews Gastroenterology & Hepatology, 13, 217-226. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Sahar, S. and Sassone-Corsi, P. (2012) Regulation of Metabolism: The Circadian Clock Dictates the Time. Trends in Endocrinology & Metabolism, 23, 1-8. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Hastings, M.H., Reddy, A.B. and Maywood, E.S. (2003) A Clockwork Web: Circadian Timing in Brain and Periphery, in Health and Disease. Nature Reviews Neuroscience, 4, 649-661. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
LeGates, T.A., Fernandez, D.C. and Hattar, S. (2014) Light as a Central Modulator of Circadian Rhythms, Sleep and Affect. Nature Reviews Neuroscience, 15, 443-454. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Takahashi, J.S., Hong, H.K., Ko, C.H. and McDearmon, E.L. (2008) The Genetics of Mammalian Circadian Order and Disorder: Implications for Physiology and Disease. Nature Reviews Genetics, 9, 764-775. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Asher, G. and Schibler, U. (2011) Crosstalk between Components of Circadian and Metabolic Cycles in Mammals. Cell Metabolism, 13, 125-137. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Eckel-Mahan, K. and Sassone-Corsi, P. (2013) Metabolism and the Circadian Clock Converge. Physiological Reviews, 93, 107-135. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Bass, J. (2012) Circadian Topology of Metabolism. Nature, 491, 348-356. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Feng, D. and Lazar, M.A. (2012) Clocks, Metabolism, and the Epigenome. Molecular Cell, 47, 158-167. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Asher, G. and Sassone-Corsi, P. (2015) Time for Food: The Intimate Interplay between Nutrition, Metabolism, and the Circadian Clock. Cell, 161, 84-92. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Panda, S. (2016) Circadian Physiology of Metabolism. Science, 354, 1008-1015. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Yamazaki, S., Numano, R., Abe, M., Hida, A., Takahashi, R., Ueda, M., et al. (2000) Resetting Central and Peripheral Circadian Oscillators in Transgenic rats. Science, 288, 682-685. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Welsh, D.K., Takahashi, J.S. and Kay, S.A. (2010) Suprachiasmatic Nucleus: Cell Autonomy and Network Properties. Annual Review of Physiology, 72, 551-577. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Pinato, D.J. and Stebbing, J. (2016) Melatonin: Resetting the Clock of Cancer Progression? The Lancet Oncology, 17, 23-24. [Google Scholar] [CrossRef]
|
|
[15]
|
Storch, K.F., Paz, C., Signorovitch, J., Raviola, E., Pawlyk, B., Li, T., et al. (2007) Intrinsic Circadian Clock of the Mammalian Retina: Importance for Retinal Processing of Visual Information. Cell, 130, 730-741. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Sadacca, L.A., Lamia, K.A., Delemos, A.S., Blum, B. and Weitz, C.J. (2011) An Intrinsic Circadian Clock of the Pancreas Is Required for Normal Insulin Release and Glucose Homeostasis in Mice. Diabetologia, 54, 120-124. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Ferrell, J.M. and Chiang, J.Y.L. (2015) Circadian Rhythms in Liver Metabolism and Disease. Acta Pharmaceutica Sinica B, 5, 113-122. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Tong, X. and Yin, L. (2013) Circadian Rhythms in Liver Physiology and Liver Diseases. Comprehensive Physiology, 3, 917-940. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Mason, I.C., Qian, J., Adler, G.K. and Scheer, F.A.J.L. (2020) Impact of Circadian Disruption on Glucose Metabolism: Implications for Type 2 Diabetes. Diabetologia, 63, 462-472. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Saran, A.R., Dave, S. and Zarrinpar, A. (2020) Circadian Rhythms in the Pathogenesis and Treatment of Fatty Liver Disease. Gastroenterology, 158, 1948-1966. e1. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Gooley, J.J. and Chua, E.C.P. (2014) Diurnal Regulation of Lipid Metabolism and Applications of Circadian Lipidomics. Journal of Genetics and Genomics, 41, 231-250. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Mukherji, A., Bailey, S.M., Staels, B. and Baumert, T.F. (2019) The Circadian Clock and Liver Function in Health and Disease. Journal of Hepatology, 71, 200-211. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Sato, K., Meng, F., Francis, H., Wu, N., Chen, L., Kennedy, L., et al. (2020) Melatonin and Circadian Rhythms in Liver Diseases: Functional Roles and Potential Therapies. Journal of Pineal Research, 68, e12639. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Safari, Z. and Gérard, P. (2019) The Links between the Gut Microbiome and Non-Alcoholic Fatty Liver Disease (NAFLD). Cellular and Molecular Life Sciences, 76, 1541-1558. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Younossi, Z.M. (2019) Non-Alcoholic Fatty Liver Disease—A Global Public Health Perspective. Journal of Hepatology, 70, 531-544. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Shi, D., Chen, J., Wang, J., Yao, J., Huang, Y., Zhang, G., et al. (2019) Circadian Clock Genes in the Metabolism of Non-Alcoholic Fatty Liver Disease. Frontiers in Physiology, 10, Article No. 423. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Hu, C., Zhao, L., Tao, J. and Li, L. (2019) Protective Role of Melatonin in Early-Stage and End-Stage Liver Cirrhosis. Journal of Cellular and Molecular Medicine, 23, 7151-7162. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Montagnese, S., Middleton, B., Mani, A.R., Skene, D.J. and Morgan, M.Y. (2010) On the Origin and the Consequences of Circadian Abnormalities in Patients with Cirrhosis. American Journal of Gastroenterology, 105, 1773-1781. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Chen, P., Kakan, X. and Zhang, J. (2010) Altered Circadian Rhythm of the Clock Genes in Fibrotic Livers Induced by Carbon Tetrachloride. FEBS Letters, 584, 1597-1601. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zhuang, X., Forde, D., Tsukuda, S., D’Arienzo, V., Mailly, L., Harris, J.M., et al. (2021) Circadian Control of Hepatitis B Virus Replication. Nature Communications, 12, Article No. 1658. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Ni, Y., Lempp, F.A., Mehrle, S., Nkongolo, S., Kaufman, C., Fälth, M., et al. (2014) Hepatitis B and D Viruses Exploit Sodium Taurocholate Co-Transporting Polypeptide for Species-Specific Entry into Hepatocytes. Gastroenterology, 146, 1070-1083. e6. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Fu, T., Zhao, X. and Evans, R.M. (2016) Liver Cancer Checks in When Bile Acid Clocks Out. Cancer Cell, 30, 827-828. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Cui, M., Zheng, M., Sun, B., Wang, Y., Ye, L. and Zhang, X. (2015) A Long Noncoding RNA Perturbs the Circadian Rhythm of Hepatoma Cells to Facilitate Hepatocarcinogenesis. Neoplasia, 17, 79-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Lin, Y.M., Chang, J.H., Yeh, K.T., Yang, M.Y., Liu, T.C., Lin, S.F., et al. (2008) Disturbance of Circadian Gene Expression in Hepatocellular Carcinoma. Molecular Carcinogenesis, 47, 925-933. [Google Scholar] [CrossRef] [PubMed]
|