| [1] | Quigley, E.M. (2013) Gut Bacteria in Health and Disease. Journal of Gastroenterology and Hepatology, 9, 560-569. | 
                     
                                
                                    
                                        | [2] | Passos, M.D.C.F. and Moraes-Filho, J.P. (2017) Intestinal Microbiota in Digestive Diseases. Arquivos de Gastroenterologia, 54, 255-262. https://doi.org/10.1590/s0004-2803.201700000-31
 | 
                     
                                
                                    
                                        | [3] | Robles-Alonso, V. and Guarner, F. (2013) Progreso en el conocimiento de la microbiota intestinal humana [Progress in the Knowledge of the Intestinal Human Microbiota]. Nutrición Hospitalaria, 28, 553-557. (In Spanish) https://doi.org/10.3305/nh.2013.28.3.6601
 | 
                     
                                
                                    
                                        | [4] | Odamaki, T., Kato, K., Sugahara, H., Hashikura, N., Takahashi, S., Xiao, J.-Z., et al. (2016) Age-Related Changes in Gut Microbiota Composition from Newborn to Centenarian: A Cross-Sectional Study. BMC Microbiology, 16, Article No. 90. https://doi.org/10.1186/s12866-016-0708-5
 | 
                     
                                
                                    
                                        | [5] | Nagpal, R., Tsuji, H., Takahashi, T., Nomoto, K., Kawashima, K., Nagata, S., et al. (2017) Ontogenesis of the Gut Microbiota Composition in Healthy, Full-Term, Vaginally Born and Breast-Fed Infants over the First 3 Years of Life: A Quantitative Bird’s-Eye View. Frontiers in Microbiology, 8, Article No. 1388. https://doi.org/10.3389/fmicb.2017.01388
 | 
                     
                                
                                    
                                        | [6] | Hasan, N. and Yang, H. (2019) Factors Affecting the Composition of the Gut Microbiota, and Its Modulation. PeerJ, 7, e7502. https://doi.org/10.7717/peerj.7502
 | 
                     
                                
                                    
                                        | [7] | Krajmalnik-Brown, R., Ilhan, Z.E., Kang, D.W. and DiBaise, J.K. (2012) Effects of Gut Microbes on Nutrient Absorption and Energy Regulation. Nutrition in Clinical Practice, 27, 201-214. https://doi.org/10.1177/0884533611436116
 | 
                     
                                
                                    
                                        | [8] | Harvard T.H. Chan School of Public Health (n.d.) The Best Diet: Quality Counts. https://www.hsph.harvard.edu/nutritionsource/healthy-weight/best-diet-quality-counts/#ref23
 | 
                     
                                
                                    
                                        | [9] | Holscher, H.D. (2017) Dietary Fiber and Prebiotics and the Gastrointestinal Microbiota. Gut Microbes, 8, 172-184. https://doi.org/10.1080/19490976.2017.1290756
 | 
                     
                                
                                    
                                        | [10] | Schanche, M., Avershina, E., Dotterud, C., Øien, T., Storrø, O., Johnsen, R., et al. (2015) High-Resolution Analyses of Overlap in the Microbiota between Mothers and Their Children. Current Microbiology, 71, 283-290. https://doi.org/10.1007/s00284-015-0843-5
 | 
                     
                                
                                    
                                        | [11] | Biagi, E., Rampelli, S., Turroni, S., Quercia, S., Rampelli, S., Quercia, S., et al. (2017) The Gut Microbiota of Centenarians: Signatures of Longevity in the Gut Microbiota Profile. Mechanisms of Ageing and Development, 165, 180-184. https://doi.org/10.1016/j.mad.2016.12.013
 | 
                     
                                
                                    
                                        | [12] | Lin, L. and Zhang, J. (2017) Role of Intestinal Microbiota and Metabolites on Gut Homeostasis and Human Diseases. BMC Immunology, 18, Article No. 2. https://doi.org/10.1186/s12865-016-0187-3
 | 
                     
                                
                                    
                                        | [13] | Thursby, E. and Juge, N. (2017) Introduction to the Human Gut Microbiota. Biochemical Journal, 474, 1823-1836. https://doi.org/10.1042/BCJ20160510
 | 
                     
                                
                                    
                                        | [14] | Louis, P. and Flint, H.J. (2017) Formation of Propionate and Butyrate by the Human Colonic Microbiota. Environ Environmental Microbiology, 19, 29-41. https://doi.org/10.1111/1462-2920.13589
 | 
                     
                                
                                    
                                        | [15] | Perry, R.J., Peng, L., Barry, N.A., Cline, G.W., Zhang, D., Cardone, R.L., et al. (2016) Acetate Mediates a Microbiome-Brain-β-Cell Axis to Promote Metabolic Syndrome. Nature, 534, 213-217. https://doi.org/10.1038/nature18309
 | 
                     
                                
                                    
                                        | [16] | LeBlanc, J.G., Milani, C., de Giori, G.S., Sesma, F., van Sinderen, D. and Ventura, M. (2013) Bacteria as Vitamin Suppliers to Their Host: A Gut Microbiota Perspective. Current Opinion in Biotechnology, 24, 160-168. https://doi.org/10.1016/j.copbio.2012.08.005
 | 
                     
                                
                                    
                                        | [17] | Forsythe, P., Sudo, N., Dinan, T., Taylor, V.H. and Bienenstock, J. (2010) Mood and Gut Feelings. Brain, Behavior, and Immunity, 24, 9-16. https://doi.org/10.1016/j.bbi.2009.05.058
 | 
                     
                                
                                    
                                        | [18] | Avoli, M. and Krnjević, K. (2016) The Long and Winding Road to Gamma-Amino-Butyric Acid as Neurotransmitter. Canadian Journal of Neurological Sciences, 43, 219-226. https://doi.org/10.1017/cjn.2015.333
 | 
                     
                                
                                    
                                        | [19] | Windey, K., De Preter, V. and Verbeke, K. (2012) Relevance of Protein Fermentation to Gut Health. Molecular Nutrition & Food Research, 56, 184-196. https://doi.org/10.1002/mnfr.201100542
 | 
                     
                                
                                    
                                        | [20] | Abdollahi-Roodsaz, S., Abramson, S.B. and Scher, J.U. (2016) The Metabolic Role of the Gut Microbiota in Health and Rheumatic Disease: Mechanisms and Interventions. Nature Reviews Rheumatology, 12, 446-455. https://doi.org/10.1038/nrrheum.2016.68
 | 
                     
                                
                                    
                                        | [21] | Bron, P.A., Kleerebezem, M., Brummer, R.J., Cani, P., Mercenier, A., MacDonald, T., et al. (2017) Can Probiotics Modulate Human Disease by Impacting Intestinal Barrier Function? British Journal of Nutrition, 117, 93-107. https://doi.org/10.1017/S0007114516004037
 | 
                     
                                
                                    
                                        | [22] | Morrison, D.J. and Preston, T. (2016) Formation of Short Chain Fatty Acids by the Gut Microbiota and Their Impact on Human Metabolism. Gut Microbes, 7, 189-200. https://doi.org/10.1080/19490976.2015.1134082
 | 
                     
                                
                                    
                                        | [23] | Bindels, L.B., Porporato, P., Dewulf, E.M., Verrax, J., Neyrinck, A.M., Martin, J.C., et al. (2012) Gut Microbiota-Derived Propionate Reduces Cancer Cell Proliferation in the Liver. British Journal of Cancer, 107, 1337-1344. https://doi.org/10.1038/bjc.2012.409
 | 
                     
                                
                                    
                                        | [24] | Yan, J., Herzog, J.W., Tsang, K., Brennan, C.A., Bower, M.A., Garrett, W.S., et al. (2016) Gut Microbiota Induce IGF-1 and Promote Bone Formation and Growth. Proceedings of the National Academy of Sciences of the United States of America, 113, E7554-E7563. https://doi.org/10.1073/pnas.1607235113
 | 
                     
                                
                                    
                                        | [25] | Weaver, C.M. (2015) Diet, Gut Microbiome, and Bone Health. Current Osteoporosis Reports, 13, 125-130. https://doi.org/10.1007/s11914-015-0257-0
 | 
                     
                                
                                    
                                        | [26] | Zemel, B.S. (2017) Dietary Calcium Intake Recommendations for Children: Are They Too High? American Journal of Clinical Nutrition, 105, 1025-1026. https://doi.org/10.3945/ajcn.117.155705
 | 
                     
                                
                                    
                                        | [27] | Parvaneh, M., Karimi, G., Jamaluddin, R., Ng, M.H., Zuriati, I., Muhammad, S.I., et al. (2018) Lactobacillus helveticus (ATCC 27558) Upregulates Runx2 and Bmp2 and Modulates Bone Mineral Density in Ovariectomy-Induced Bone Loss Rats. Clinical Interventions in Aging, 13, 1555-1564. https://doi.org/10.2147/CIA.S169223
 | 
                     
                                
                                    
                                        | [28] | Chen, X., Eslamfam, S., Fang, L., Qiao, S. and Ma, X. (2017) Maintenance of Gastrointestinal Glucose Homeostasis by the Gut-Brain Axis. Current Protein & Peptide Science, 18, 541-547. https://doi.org/10.2174/1389203717666160627083604
 | 
                     
                                
                                    
                                        | [29] | Soty, M., Gautier-Stein, A., Rajas, F, and Mithieux, G. (2017) Gut-Brain Glucose Signaling in Energy Homeostasis. Cell Metabolism, 25, 1231-1242. https://doi.org/10.1016/j.cmet.2017.04.032
 | 
                     
                                
                                    
                                        | [30] | Mohajeri, M.H., La Fata, G., Steinert, R.E. and Weber, P. (2018) Relationship between the Gut Microbiome and Brain Function. Nutrition Reviews, 76, 481-496. https://doi.org/10.1093/nutrit/nuy009
 | 
                     
                                
                                    
                                        | [31] | Sampson, T.R. and Mazmanian, S.K. (2015) Control of Brain Development, Function, and Behavior by the Microbiome. Cell Host & Microbe, 17, 565-576. https://doi.org/10.1016/j.chom.2015.04.011
 | 
                     
                                
                                    
                                        | [32] | Jaacks, L.M., Vandevijvere, S., Pan, A., McGowan, C.J., Wallace, C., Imamura, F., et al. (2019) The Obesity Transition: Stages of the Global Epidemic. Lancet Diabetes & Endocrinology, 7, 231-240. https://doi.org/10.1016/S2213-8587(19)30026-9
 | 
                     
                                
                                    
                                        | [33] | Andoh, A., Nishida, A., Takahashi, K., Inatomi, O., Imaeda, H., Bamba, S., et al. (2016) Comparison of the Gut Microbial Community between Obese and Lean Peoples Using 16S Gene Sequencing in a Japanese Population. Journal of Clinical Biochemistry and Nutrition, 59, 65-70. https://doi.org/10.3164/jcbn.15-152
 | 
                     
                                
                                    
                                        | [34] | Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., et al. (2012) A Metagenome-Wide Association Study of Gut Microbiota in Type 2 Diabetes. Nature, 490, 55-60. https://doi.org/10.1038/nature11450
 | 
                     
                                
                                    
                                        | [35] | Zou, J., Chassaing, B., Singh, V., Pellizzon, M., Ricci, M., Fythe, M.D., et al. (2018) Fiber-Mediated Nourishment of Gut Microbiota Protects against Diet-Induced Obesity by Restoring IL-22-Mediated Colonic Health. Cell Host & Microbe, 23, 41-53.e4. https://doi.org/10.1016/j.chom.2017.11.003
 | 
                     
                                
                                    
                                        | [36] | Zhao, L., Zhang, F., Ding, X., Wu, G., Lam, Y.Y., Wang, X., et al. (2018) Gut Bacteria Selectively Promoted by Dietary Fibers Alleviate Type 2 Diabetes. Science, 359, 1151-1156. https://doi.org/10.1126/science.aao5774
 | 
                     
                                
                                    
                                        | [37] | Garcia-Rios, A., Torres-Peña, J.D., Perez-Jimenez, F. and Perez-Martinez, P. (2017) Gut Microbiota: A New Marker of Cardiovascular Disease. Current Pharmaceutical Design, 23, 3233-3238. https://doi.org/10.2174/1381612823666170317144853
 | 
                     
                                
                                    
                                        | [38] | Estruch, R., Ros, E., Salas-Salvadó, J., Covas, M.-I., Corella, D., Arós, F., et al. (2018) Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. New England Journal of Medicine, 378, e34. https://doi.org/10.1056/NEJMoa1800389
 | 
                     
                                
                                    
                                        | [39] | Zhu, W., Gregory, J.C., Org, E., Buffa, J.A., Guptam N., Wang, Z., et al. (2016) Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell, 165, 111-124. https://doi.org/10.1016/j.cell.2016.02.011
 | 
                     
                                
                                    
                                        | [40] | Griffin, J.L., Wang, X. and Stanley, E. (2015) Does Our Gut Microbiome Predict Cardiovascular Risk? A Review of the Evidence from Metabolomics. Circulation: Cardiovascular Genetics, 8, 187-191. https://doi.org/10.1161/CIRCGENETICS.114.000219
 | 
                     
                                
                                    
                                        | [41] | Lane, E.R., Zisman, T.L. and Suskind, D.L. (2017) The Microbiota in Inflammatory Bowel Disease: Current and therapeutic Insights. Journal of Inflammation Research, 10, 63-73. https://doi.org/10.2147/JIR.S116088
 | 
                     
                                
                                    
                                        | [42] | Parekh, P.J., Balart, L.A. and Johnson, D.A. (2015) The Influence of the Gut Microbiome on Obesity, Metabolic Syndrome and Gastrointestinal Disease. Clinical and Translational Gastroenterology, 6, e91. https://doi.org/10.1038/ctg.2015.16
 | 
                     
                                
                                    
                                        | [43] | Bennet, S.M., Ohman, L. and Simren, M. (2015) Gut Microbiota as Potential Orchestrators of Irritable Bowel Syndrome. Gut and Liver, 9, 318-331. https://doi.org/10.5009/gnl14344
 | 
                     
                                
                                    
                                        | [44] | Leung, C., Rivera, L., Furness, J.B. and Angus, P.W. (2016) The Role of the Gut Microbiota in NAFLD. Nature Reviews Gastroenterology & Hepatology, 13, 412-425. https://doi.org/10.1038/nrgastro.2016.85
 | 
                     
                                
                                    
                                        | [45] | Pevsner-Fischer, M., Tuganbaev, T., Meijer, M., Zhang, S.-H., Zeng, Z.-R., Chen, M.-H., et al. (2016) Role of the Microbiome in Non-Gastrointestinal Cancers. World Journal of Clinical Oncology, 7, 200-213. 
https://doi.org/10.5306/wjco.v7.i2.200 |