|
[1]
|
Bray, F., Ferlay, J., Soerjomataram, I., et al. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Siegel, R.L., Miller, K.D. and Jemal, A. (2016) Cancer Statistics, 2016. CA: A Cancer Journal for Clinicians, 66, 7-30. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Xie, Y.H. (2017) Hepatitis B Virus-Associated Hepatocellular Carcinoma. Advances in Experimental Medicine and Biology, 1018, 11-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Zhu, R.X., Seto, W.K., Lai, C.L., et al. (2016) Epidemiology of Hepatocellular Carcinoma in the Asia-Pacific Region. Gut and Liver, 10, 332-339. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Chen, Y.Y. and Tian, Z.G. (2019) HBV-Induced Immune Imbalance in the Development of HCC. Frontiers in Immunology, 10, 2048. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Wang, X.C., He, Q.F., Shen, H.Y., et al. (2019) Genetic and Phenotypic Difference in CD8 T Cell Exhaustion between Chronic Hepatitis B Infection and Hepatocellular Carcinoma. Journal of Medical Genetics, 56, 18-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Li, Z.L., Chen, G., Cai, Z.X., et al. (2019) Genomic and Transcriptional Profiling of Tumor Infiltrated CD8 T Cells Revealed Functional Heterogeneity of Antitumor Immunity in Hepatocellular Carcinoma. Oncoimmunology, 8, e1538436. [Google Scholar] [CrossRef]
|
|
[8]
|
Witjes, C.D., Ijzermans, J.N., Van Der Eijk, A.A., et al. (2011) Quantitative HBV DNA and AST Are Strong Predictors for Survival after HCC Detection in Chronic HBV Patients. Netherlands Journal of Medicine, 69, 508-513.
|
|
[9]
|
Huang, S.Y., Xia, Y., Lei, Z.Q., et al. (2017) Antiviral Therapy Inhibits Viral Reactivation and Improves Survival after Repeat Hepatectomy for Hepatitis B Virus-Related Recurrent Hepatocellular Carcinoma. Journal of the American College of Surgeons, 224, 283-293.e4. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Tan, A.T. and Schreiber, S. (2020) Adoptive T-Cell Therapy for HBV-Associated HCC and HBV Infection. Antiviral Research, 176, Article ID: 104748. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Gehring, A.J., Ho, Z.Z., Tan, A.T., et al. (2009) Profile of Tumor Antigen-Specific CD8 T Cells in Patients with Hepatitis B Virus-Related Hepatocellular Carcinoma. Gastroenterology, 137, 682-690. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Inada, Y., Mizukoshi, E., Seike, T., et al. (2019) Characteristics of Immune Response to Tumor-Associated Antigens and Immune Cell Profile in Patients with Hepatocellular Carcinoma. Hepatology, 69, 653-665. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Yang, H.Y., Sun, L.J., Guan, A., et al. (2021) Unique TP53 Neoantigen and the Immune Microenvironment in Long- Term Survivors of Hepatocellular Carcinoma. Cancer Immunology, Immunotherapy, 70, 667-677. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Rong, Y.H., Dong, Z., Hong, Z.X., et al. (2017) Reactivity toward Bifidobacterium longum and Enterococcus hirae Demonstrate Robust CD8 T Cell Response and Better Prognosis in HBV-Related Hepatocellular Carcinoma. Experimental Cell Research, 358, 352-359. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Donisi, C., Puzzoni, M., Ziranu, et al. (2020) Immune Checkpoint Inhibitors in the Treatment of HCC. Frontiers in Oncology, 10, Article ID: 601240. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Elkhoueiry, A.B., Sangro, B., Yau, T., et al. (2017) Nivolumab in Patients with Advanced Hepatocellular Carcinoma (CheckMate 040): An Open-Label, Non-Comparative, Phase 1/2 Dose Escalation and Expansion Trial. The Lancet, 389, 2492-2502. [Google Scholar] [CrossRef]
|
|
[17]
|
Duffy, A.G., Uiahannan, S.V., Makorova, R.O., et al. (2017) Tremelimumab in Combination with Ablation in Patients with Advanced Hepatocellular Carcinoma. Journal of Hepatology, 66, 545-551. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Liu, X.L., Li, M.G., Wang, X.H., et al. (2019) PD-1+ TIGIT+ CD8+ T Cells Are Associated with Pathogenesis and Progression of Patients with Hepatitis B Virus-Related Hepatocellular Carcinoma. Cancer Immunology, Immunotherapy, 68, 2041-2054. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Liu, F.R., Zeng, G.C., Zhou, S.T., et al. (2018) Blocking Tim-3 or/and PD-1 Reverses Dysfunction of Tumor-Infil- trating Lymphocytes in HBV-Related Hepatocellular Carcinoma. Bulletin du Cancer, 105, 493-501. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Saeidi, A., Zandi, K., Cheok, Y.Y., et al. (2018) T-Cell Exhaustion in Chronic Infections: Reversing the State of Exhaustion and Reinvigorating Optimal Protective Immune Responses. Frontiers in Immunology, 9, 2569. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Otano, I., Escors, D., Schurich, A. et al. (2018) Molecular Recalibration of PD-1+ Antigen-Specific T Cells from Blood and Liver. Molecular Therapy, 26, 2553-2566. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Lim, C.J., Lee, Y.H., Pan, L., et al. (2019) Multidimensional Analyses Reveal Distinct Immune Microenvironment in Hepatitis B Virus-Related Hepatocellular Carcinoma. Gut, 68, 916-927. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Trehanpati, N. and Vyas, A.K. (2017) Immune Regulation by T Regulatory Cells in Hepatitis B Virus-Related Inflammation and Cancer. Scandinavian Journal of Immunology, 85, 175-181. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Song, G.H., Shi, Y., Zhang, M.Y., et al. (2020) Global Immune Characterization of HBV/HCV-Related Hepatocellular Carcinoma Identifies Macrophage and T-Cell Subsets Associated with Disease Progression. Cell Discovery, 6, 90. [Google Scholar] [CrossRef]
|
|
[25]
|
Li, T.Y., Zhang, X.Y., Lv, Z., et al. (2020) Increased Expression of Myeloid-Derived Suppressor Cells in Patients with HBV-Related Hepatocellular Carcinoma. BioMed Research International, 2020, Article ID: 6527192. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Hsiao, Y.W., Chiu, L.T., Chen, C.H., et al. (2019) Tumor-Infiltrating Leukocyte Composition and Prognostic Power in Hepatitis B- and Hepatitis C-Related Hepatocellular Carcinomas. Genes (Basel), 10, 630. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Shi, J.X., Wang, F.M., et al. (2020) Interleukin 22 Is Related to Development and Poor Prognosis of Hepatocellular Carcinoma. Clinics and Research in Hepatology and Gastroenterology, 44, 855-864. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Nishida, N. and Kudo, M. (2017) Immunological Microenvironment of Hepatocellular Carcinoma and Its Clinical Implication. Oncology, 92, 40-49. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Wang, Y.G., Zheng, D.H., Shi, M., et al. (2019) T Cell Dysfunction in Chronic Hepatitis B Infection and Liver Cancer: Evidence from Transcriptome Analysis. Journal of Medical Genetics, 56, 22-28. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Sanderson, S.M. and Locasale, J.W. (2018) Revisiting the Warburg Effect: Some Tumors Hold Their Breath. Cell Metabolism, 28, 669-670. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Tian, H.N., Zhu, X.Y., Lv, Y., et al. (2020) Glucometabolic Reprogramming in the Hepatocellular Carcinoma Microenvironment: Cause and Effect. Cancer Management and Research, 12, 5957-5974. [Google Scholar] [CrossRef]
|
|
[32]
|
Sharabi, K., Tavares, C.D.J., Rines, A.K., et al. (2015) Molecular Pathophysiology of Hepatic Glucose Production. Molecular Aspects of Medicine, 46, 21-33. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Bian, X.L., Chen, H.Z., Yang, P.B., et al. (2017) Nur77 Suppresses Hepatocellular Carcinoma via Switching Glucose Metabolism toward Gluconeogenesis through Attenuating Phosphoenolpyruvate Carboxykinase Sumoylation. Nature Communications, 8, Article No. 14420. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Singh, L., Aldosary, S., Saeedan, A.S., et al. (2018) Prolyl Hydroxylase 2: A Promising Target to Inhibit Hypoxia-Induced Cellular Metabolism in Cancer Cells. Drug Discovery Today, 23, 1873-1882. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Liu, Y.Y., Jiang, Y.Q., Zhang, M., et al. (2018) Modulating Hypoxia via Nanomaterials Chemistry for Efficient Treatment of Solid Tumors. Accounts of Chemical Research, 51, 2502-2511. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Yang, J., Jin, X., Yan, Y.Q., et al. (2017) Inhibiting Histone Deacetylases Suppresses Glucose Metabolism and Hepatocellular Carcinoma Growth by Restoring FBP1 Expression. Scientific Reports, 7, Article No. 43864. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Lu, Z.N., Tian, B. and Guo, X.L. (2017) Repositioning of Proton Pump Inhibitors in Cancer Therapy. Cancer Chemotherapy and Pharmacology, 80, 925-937. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Martinez, O.U.E., Ppeiris, P.M., Pestell, R.G., et al. (2017) Cancer Metabolism: A Therapeutic Perspective. Nature Reviews Clinical Oncology, 14, 11-31. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Fortunato, S., Bononi, G.C., et al. (2018) An Update on Patents Covering Agents That Interfere with the Cancer Glycolytic Cascade. ChemMedChem, 13, 2251-2265. [Google Scholar] [CrossRef] [PubMed]
|