|
[1]
|
Di Nezza, E., Palatucci, G. and Valdinoci, E. (2012) Hitchhiker’s Guide to the Fractional Sobolev Spaces. Bulletin des Sciences Math´ematiques, 136, 521-573. [Google Scholar] [CrossRef]
|
|
[2]
|
Bartsch, T. and Wang, Z. (1995) Existence and Multiplicity Results for Some Superlinear Elliptic Problems on RN . Communications in Partial Differential Equations, 20, 1725-1741. [Google Scholar] [CrossRef]
|
|
[3]
|
Bartsch, T., Pankov, A. and Wang, Z. (2001) Nonlinear Schr¨odinger Equations with Steep Potential Well. Communications in Contemporary Mathematics, 3, 549-569. [Google Scholar] [CrossRef]
|
|
[4]
|
Ding, Y. and Szulkin, A. (2007) Bound States for Semilinear Schr¨odinger Equations with Sign- Changing Potential. Calculus of Variations and Partial Differential Equations, 29, 397-419. [Google Scholar] [CrossRef]
|
|
[5]
|
Jiang, Y. and Zhou, H. (2011) Schr¨odinger-Poisson System with Steep Potential Well. Journal of Differential Equations, 251, 582-608. [Google Scholar] [CrossRef]
|
|
[6]
|
Sun, J. and Wu, T. (2014) Ground State Solutions for an Indefinite Kirchhoff Type Problem with Steep Potential Well. Journal of Differential Equations, 256, 1771-1792. [Google Scholar] [CrossRef]
|
|
[7]
|
Ye, Y. and Tang, C. (2015) Existence and Multiplicity of Solutions for Schr¨odinger-Poisson Equations with Sign-Changing Potential. Calculus of Variations and Partial Differential E- quations, 53, 383-411. [Google Scholar] [CrossRef]
|
|
[8]
|
Zhao, L., Liu, H. and Zhao, F. (2013) Existence and Concentration of Solutions for the Schr¨odinger-Poisson Equations with Steep Well Potential. Journal of Differential Equation- s, 255, 1-23. [Google Scholar] [CrossRef]
|
|
[9]
|
Secchi, S. (2013) Ground State Solutions for Nonlinear Fractional Schr¨odinger Equations in RN .Journal of Mathematical Physics, 54, Article ID: 031501. [Google Scholar] [CrossRef]
|
|
[10]
|
Palatucci, G. and Pisante, A. (2014) Improved Sobolev Embeddings, Profile Decomposition and Concentration-Compactness for Fractional Sobolev Spaces. Calculus of Variations and Partial Differential Equations, 50, 799-829. [Google Scholar] [CrossRef]
|
|
[11]
|
Benci, V. and Fortunato, D. (1998) An Eigenvalue Problem for the Schr¨odinger-Maxwell E- quations. Topological Methods in Nonlinear Analysis, 11, 283-293. [Google Scholar] [CrossRef]
|
|
[12]
|
Landkof, N. (1972) Foundations of Modern Potential Theory. Springer-Verlag, New York-Heidelberg. [Google Scholar] [CrossRef]
|
|
[13]
|
Teng, K. (2016) Existence of Ground State Solutions for the Nonlinear Fractional Schr¨odinger- Poisson System with Critical Sobolev Exponent. Journal of Differential Equations, 261, 3061- 3106. [Google Scholar] [CrossRef]
|
|
[14]
|
Br´ezis, H. and Lieb, E. (1983) A Relation Between Pointwise Convergence of Functions and Convergence of Functionals. Proceedings of the AMS, 88, 486-490. [Google Scholar] [CrossRef]
|
|
[15]
|
Szulkin, A. and Weth, T. (2009) Ground State Solutions for Some Indefinite Variational Prob- lems. Journal of Functional Analysis, 257, 3802-3822. [Google Scholar] [CrossRef]
|
|
[16]
|
Szulkin, A. and Weth, T. (2010) The Method of Nehari Manifold. In: Gao, D.Y. and Motreanu, D., Eds., Handbook of Nonconvex Analysis and Applications, International Press, Somerville, MA, 597-632.
|
|
[17]
|
Willem, M. (1996) Minimax Theorems. Birkh¨auser Boston, Inc., Boston, MA. [Google Scholar] [CrossRef]
|
|
[18]
|
Bisci, G.M., Radulescu, D. and Servadei, R. (2016) Variational Methods for Nonlocal Fractional Problems. Vol. 162, Cambridge University Press, Cambridge.
|