| [1] | Blomgren, G.E. (2017) The Development and Future of Lithium Ion Batteries. Journal of the Electrochemical Society, 164, A5019-A5025. https://doi.org/10.1149/2.0251701jes
 | 
                     
                                
                                    
                                        | [2] | Seh, Z., Sun, Y., Zhang, Q. and Cui, Y. (2016) Designing High-Energy Lithium-Sulfur Batteries. Chemical Society Reviews, 45, 5605-5634. https://doi.org/10.1039/C5CS00410A
 | 
                     
                                
                                    
                                        | [3] | Myung, S.T., Maglia, F., Park, K.J., Yoon, C.S., Lamp, P., Kim, S.J. and Sun, Y.K. (2017) Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives. ACS Energy Letters, 2, 196-223. https://doi.org/10.1021/acsenergylett.6b00594
 | 
                     
                                
                                    
                                        | [4] | Shi, J., Xiao, D., Ge, M., Yu, X., Chu, Y., Huang, X., Zhang, X., Yin, Y., Yang, X., Guo, Y., Gu, L. and Wan, L. (2018) High-Capacity Cathode Material with High Voltage for Li-Ion Batteries. Advanced Materials, 30, Article ID: 1705575. https://doi.org/10.1002/adma.201705575
 | 
                     
                                
                                    
                                        | [5] | Wang, K.X., Li, X.H. and Chen, J.S. (2015) Surface and Interface Engineering of Electrode Materials for Lithium-Ion Batteries. Advanced Materials, 27, 527-545. https://doi.org/10.1002/adma.201402962
 | 
                     
                                
                                    
                                        | [6] | Shen, S., Xia, X.-H., Xie, D., Yao, Z.J., Zhong, Y., Zhan, J.Y., Wang, D.H., Wu, J.B., Wang, X.L. and Tu, J.P. (2017) Encapsulating Silicon Nanoparticles into Mesoporous Carbon Forming Pomegranate Structured Microspheres as a High-Performance Anode for Lithium Ion Batteries. Journal of Ma-terials Chemistry A, 5, 11197-11203. https://doi.org/10.1039/C7TA03294C
 | 
                     
                                
                                    
                                        | [7] | Wang, X.F., Feng, Z.J., Huang, J.T., Deng, W., Li, H.B., Zhang, H.S. and Wen, Z.H. (2018) Graphene-Decorated Carbon-Coated LiFePO4 Nanospheres as a High-Performance Cathode Ma-terial for Lithium-Ion Batteries. Carbon, 127, 149-157. https://doi.org/10.1016/j.carbon.2017.10.101
 | 
                     
                                
                                    
                                        | [8] | Li, C.X., Xi, Z.C., Guo, D.X., Chen, X.J. and Yin, L.W. (2018) Chemical Immobilization Effect on Lithium Polysulfides for Lith-ium-Sulfur Batteries. Small, 14, Article ID: 1701986. https://doi.org/10.1002/smll.201701986
 | 
                     
                                
                                    
                                        | [9] | Ding, Z.W., Zhao, D.L., Yao, R.R., Li, C., Cheng, X.W. and Hu, T. (2018) Polyaniline@spherical Ordered Mesoporous Car-bon/Sulfur Nanocomposites for High-Performance Lithium-Sulfur Batteries. International Journal of Hydrogen Energy, 43, 10502-10510. https://doi.org/10.1016/j.ijhydene.2018.04.134
 | 
                     
                                
                                    
                                        | [10] | Liang, X.Q., Wang, J.J., Zhang, S.Y., Wang, L.Y., Wang, W.F., Li, L.Y., Wang, H.F., Huang, D., Zhou, W.Z. and Guo, J. (2019) Fabrication of Uniform Si-Incorporated SnO2 Nanoparticles on Graphene Sheets as Advanced Anode for Li-Ion Batteries. Applied Surface Sci-ence, 476, 28-35. https://doi.org/10.1016/j.apsusc.2018.12.288
 | 
                     
                                
                                    
                                        | [11] | Sun, W.W., Tao, X.C., Du, P.P. and Wang, Y. (2019) Carbon-Coated Mixed-Metal Sulfide Hierarchical Structure: MOF-Derived Synthesis and Lithium-Storage Per-formances. Chemical Engineering Journal, 366, 622-630. https://doi.org/10.1016/j.cej.2019.01.178
 | 
                     
                                
                                    
                                        | [12] | Lee, H., Yanilmaz, M., Toprakci, O., Fu, K. and Zhang, X. (2014) A Review of Recent Developments in Membrane Separators for Rechargeable Lithium-Ion Batteries. Energy & Environ-mental Science, 7, 3857-3886. https://doi.org/10.1039/C4EE01432D
 | 
                     
                                
                                    
                                        | [13] | Zhao, G.Y., Tang, L., Zhang, L., Chen, X., Mao, Y.C. and Sun, K.N. (2018) Well-Developed Capacitive-Capacity of Metal-Organic Framework Derived Co3O4 Films in Li Ion Battery An-odes. Journal of Alloys and Compounds, 746, 277-284. https://doi.org/10.1016/j.jallcom.2018.02.285
 | 
                     
                                
                                    
                                        | [14] | Li, N., Weng, Z., Wang, Y., Li, F., Cheng, H.-M. and Zhou, H. (2014) An Aqueous Dissolved Polysulfide Cathode for Lithi-um-Sulfur Batteries. Energy & Environmental Science, 7, 3307-3312. https://doi.org/10.1039/C4EE01717J
 | 
                     
                                
                                    
                                        | [15] | Zhang, L., Liang, P., Shu, H.B., Man, X.L., Li, F., Huang, J., Dong, Q.M. and Chao, D.L. (2017) Borophene as Efficient Sulfur Hosts for Lithium-Sulfur Batteries: Suppressing Shuttle Ef-fect and Improving Conductivity. The Journal of Physical Chemistry C, 121, 15549-15555. https://doi.org/10.1021/acs.jpcc.7b03741
 | 
                     
                                
                                    
                                        | [16] | Yan, B., Li, X., Bai, Z., Song, X., Xiong, D., Zhao, M., Li, D. and Lu, S. (2017) A Review of Atomic Layer Deposition Providing High Performance Lithium Sulfur Batteries. Journal of Power Sources, 338, 34-48. https://doi.org/10.1016/j.jpowsour.2016.10.097
 | 
                     
                                
                                    
                                        | [17] | Daniele, D.L., Roberta, V. and Jusef, H. (2017) Lithium-Ion Batteries for Sustainable Energy Storage: Recent Advances towards New Cell Configurations. Green Chemistry, 19, 3442-3467. https://doi.org/10.1039/C7GC01328K
 | 
                     
                                
                                    
                                        | [18] | He, Y.B., Chang, Z., Wu, S.C. and Zhou, H.S. (2018) Ef-fective Strategies for Long-Cycle Life Lithium-Sulfur Batteries. Journal of Materials Chemistry A, 6, 6155-6182. https://doi.org/10.1039/C8TA01115J
 | 
                     
                                
                                    
                                        | [19] | Han, Y., Dong, L., Feng, J., Li, D., Li, X. and Liu, S. (2015) Cobalt Oxide Modified Porous Carbon Anode Enhancing Electrochemical Performance for Li-Ion Batteries. Electrochimica Acta, 167, 246-253. https://doi.org/10.1016/j.electacta.2015.03.197
 | 
                     
                                
                                    
                                        | [20] | Wang, Y., Qu, Q., Han, Y., Gao, T., Shao, J., Zuo, Z., Liu, W., Shi, Q. and Zheng, H. (2016) Robust 3D Nanowebs Assembled from Interconnected and Sandwich-Like C@Fe3O4@C Coaxial Nanocables for Enhanced Li-Ion Storage. Journal of Materials Chemistry A, 4, 10314-10320. https://doi.org/10.1039/C6TA03118H
 | 
                     
                                
                                    
                                        | [21] | Ren, J., Ren, R.P. and Lv, Y.K. (2018) A Flexible 3D Gra-phene@CNT@MoS2 Hybrid Foam Anode for High-Performance Lithium-Ion Battery. Chemical Engineering Journal, 353, 419-424. https://doi.org/10.1016/j.cej.2018.07.139
 | 
                     
                                
                                    
                                        | [22] | Huang, Z.D., Liu, X.M., Oh, S.W., Zhang, B., Ma, P.C. and Kim, J.K. (2011) Microscopically Porous, Interconnected Single Crystal LiNi1/3Co1/3Mn1/3O2 Cathode Material for Lithium Ion Batteries. Journal of Materials Chemistry, 21, 10777-10784. https://doi.org/10.1039/c1jm00059d
 | 
                     
                                
                                    
                                        | [23] | Chen, R., Zhao, T., Lu, J.,Wu, F., Li, L., Chen, J., Tan, G., Ye, Y. and Amine, K. (2013) Graphene-Based Three-Dimensional Hi-erarchical Sandwich-Type Architecture for High-Performance Li/S Batteries. Nano Letters, 13, 4642-4649. https://doi.org/10.1021/nl4016683
 | 
                     
                                
                                    
                                        | [24] | Tian, X.H., Zhou, Y.K., Tu, X.F., Zhang, Z.T. and Du, G.D. (2017) Well-Dispersed LiFePO4 Nanoparticles Anchored on a Three-Dimensional Graphene Aerogel as High-Performance Pos-itive Electrode Materials for Lithium-Ion Batteries. Journal of Power Sources, 340, 40-50. https://doi.org/10.1016/j.jpowsour.2016.11.049
 | 
                     
                                
                                    
                                        | [25] | Yao, M., Okuno, K., Iwaki, T., Kato, M., Tanase, S., Emura, K. and Sakai, T. (2007) LiFePO4-Based Electrode Using Micro-Porous Current Collector for High Power Lithium Ion Battery. Journal of Power Sources, 173, 545-549. https://doi.org/10.1016/j.jpowsour.2007.08.014
 | 
                     
                                
                                    
                                        | [26] | Du, Y.H., Tang, Y.F., Huang, F.Q. and Chang, C.K. (2016) Preparation of Three-Dimensional Free-Standing Nano-LiFePO4/Graphene Composite for High Performance Lithium Ion Battery. RSC Advances, 6, 52279-52283. https://doi.org/10.1039/C6RA08937B
 | 
                     
                                
                                    
                                        | [27] | Fu, F., Tang, J.Y., Yao, Y.Z. and Shao, M.H. (2016) Hollow Porous Hierarchical-Structured 0.5Li2MnO¬-0.5LiMn0.4Co0.3Ni0.3O2 as a High-Performance Cathode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 8, 25654-25659. https://doi.org/10.1021/acsami.6b09118
 | 
                     
                                
                                    
                                        | [28] | Xu, J.T., Chou, S.L., Zhou, C.F., Gu, Q.F., Liu, H.K. and Dou, S.X. (2014) Three-Dimensional-Network Li3V2(PO4)3/C Composite as High Rate Lithium Ion Battery Cathode Material and Its Compatibility with Ionic Liquid Electrolytes. Journal of Power Sources, 246, 124-131. https://doi.org/10.1016/j.jpowsour.2013.07.055
 | 
                     
                                
                                    
                                        | [29] | Cui, K. and Li, Y.K. (2016) Monoclinic Li3V2(PO4)3/C Nanocrystals Co-Modified with Graphene Nanosheets and Carbon Nanotubes as a Three-Dimensional-Network Cathode Material for Rechargeable Lithium-Ion Batteries. RSC Advances, 6, 8431-8439. https://doi.org/10.1039/C5RA22005J
 | 
                     
                                
                                    
                                        | [30] | Chao, D., Xia, X., Liu, J., Fan, Z., Ng, C.F., Lin, J., Zhang, H., Shen, Z.X. and Fan, H.J. (2014) Lithium-Ion Batteries: A V2O5/Conductive-Polymer Core/Shell Nanobelt Array on Three-Dimensional Graphite Foam: A High-Rate, Ultrastable, and Freestanding Cathode for Lithium-Ion Batteries. Ad-vanced Materials, 26, 5733. https://doi.org/10.1002/adma.201470223
 | 
                     
                                
                                    
                                        | [31] | Gao, X.T., Liu, Y.T., Zhu, X.D., Yan, D.J., Wang, C., Feng, Y.J. and Sun, K.N. (2018) V2O5 Nanoparticles Confined in Three-Dimensionally Organized, Porous Nitrogen-Doped Gra-phene Frameworks: Flexible and Free-Standing Cathodes for High Performance Lithium Storage. Carbon, 140, 218-226. https://doi.org/10.1016/j.carbon.2018.08.060
 | 
                     
                                
                                    
                                        | [32] | Pan, A.Q., Wu, H.B., Yu, L., Zhu, T. and Lou, X.W. (2012) Synthesis of Hierarchical Three-Dimensional Vanadium Oxide Microstructures as High-Capacity Cathode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 4, 3874-3879. https://doi.org/10.1021/am3012593
 | 
                     
                                
                                    
                                        | [33] | Guo, Q., Sun, Z., Gao, M., Tan, Z., Zhang, B. and Su, D.S. (2013) Po-rous V2O5-SnO2/CNTs Composites as High-Performance Cathode Materials for Lithium-Ion Batteries. Journal of Ener-gy Chemistry, 22, 347-355. https://doi.org/10.1016/S2095-4956(13)60043-1
 | 
                     
                                
                                    
                                        | [34] | Liu, J., Zheng, Q., Goodman, M.D., Zhu, H., Kim, J., Krue-ger, N.A., Ning, H., Huang, X., Liu, J., Terrones, M. and Braun, P.V. (2016) Graphene Sandwiched Mesostructured Li-Ion Battery Electrodes. Advanced Materials, 28, 7696-7702. https://doi.org/10.1002/adma.201600829
 | 
                     
                                
                                    
                                        | [35] | Park, B.G., Kim, S., Kim, I.-D. and Park, Y.J. (2010) Structural and Electrochemical Performance of Three-Dimensional LiMn2O4 Thin Film. Journal of Materials Science, 45, 3947-3953. https://doi.org/10.1007/s10853-010-4460-1
 | 
                     
                                
                                    
                                        | [36] | Zhang, X.H., Chen, D., Liu, Y.P., Han, W.W., Chu, H.Q. and Rui, X.H. (2017) Integrated Charge Transfer in Li3V2(PO4)3/C for High-Power Li-Ion Batteries. International Journal of Electrochemical Science, 12, 9925-9932. https://doi.org/10.20964/2017.11.26
 | 
                     
                                
                                    
                                        | [37] | Li, J.Z., Luo, S.H., Ding, X.Y., Wang, Q. and He, P. (2018) Three-Dimensional Honeycomb-Structural LiAlO2-Modified LiMnPO4 Composite with Superior High Rate Capacity as Li-Ion Battery. ACS Applied Materials & Interfaces, 10, 10786-10795. https://doi.org/10.1021/acsami.7b17597
 | 
                     
                                
                                    
                                        | [38] | Ragupathi, V., Krishnaswamy, S., Raman, S., Panigrahi, P., Lee, J. and Nagarajan, G.S. (2018) Enhanced Electrochemical Performance of LiCoBO3 Cathode Material for Next Generation Lithium-Ion Batteries. Applied Surface Science, 449, 421-425. https://doi.org/10.1016/j.apsusc.2017.11.087
 | 
                     
                                
                                    
                                        | [39] | Wang, Y., Shao, X., Xu, H., Xie, M., Deng, S., Wang, H., Liu, J. and Yan, H. (2013) Facile Synthesis of Porous LiMn2O4 Spheres as Cathode Materials for High-Power Lithium Ion Batteries. Journal of Power Sources, 226, 140-148. https://doi.org/10.1016/j.jpowsour.2012.10.077
 | 
                     
                                
                                    
                                        | [40] | Huang, Y., Hou, X., Ma, S., Zou, X., Wu, Y., Hu, S., Shao, Z. and Liu, X. (2015) Template GNL-Assisted Synthesis of Porous Li1.2Mn0.534Ni0.133Co0.133O2: Towards High Performance Cathodes for Lithium Ion Batteries. RSC Advances, 5, 25258-25265. https://doi.org/10.1039/C5RA00845J
 | 
                     
                                
                                    
                                        | [41] | Biasi, L.D., Lieser, G., Drager, C., Indris, S., Rana, J., Schumacher, G., Monig, R., Ehrenberg, H., Binder, J.R. and Gebwein, H. (2017) LiCaFeF6: A Zero-Strain Cathode Ma-terial for Use in Li-Ion Batteries. Journal of Power Sources, 362, 192-201. https://doi.org/10.1016/j.jpowsour.2017.07.007
 | 
                     
                                
                                    
                                        | [42] | Baster, D., Paziak, P., Ziabka, M., Wazny, G. and Molenda, J. (2018) LiNi0.6Co0.4-zTizO2—New Cathode Materials for Li-Ion Batteries. Solid State Ionics, 320, 118-125. https://doi.org/10.1016/j.ssi.2018.03.002
 | 
                     
                                
                                    
                                        | [43] | Doherty, C.M., Caruso, R.A., Smarsly, B.M. and Drummond, C.J. (2009) Colloidal Crystal Templating to Produce Hierarchically Porous LiFePO4 Electrode Materials for High Power Lithium Ion Batteries. Chemistry of Materials, 21, 2895-2903. https://doi.org/10.1021/cm900698p
 | 
                     
                                
                                    
                                        | [44] | Tu, X., Zhou, Y. and Song, Y. (2017) Freeze-Drying Synthesis of Three-Dimensional Porous LiFePO4 Modified with Well-Dispersed Nitrogen-Doped Carbon Nanotubes for High-Performance Lithium-Ion Batteries. Applied Surface Sci-ence, 400, 329-338. https://doi.org/10.1016/j.apsusc.2016.12.220
 | 
                     
                                
                                    
                                        | [45] | Zhao, H.Y., Wang, J., Wang, G.F., Liu, S.S., Tan, M., Liu, X.Q. and Komarneni, S. (2017) Facile Synthesis of Orthorhombic LiMnO2 Nanorods by In-Situ Car-bothermal Reduction: Promising Cathode Material for Li Ion Batteries. Ceramics International, 43, 10585-10589. https://doi.org/10.1016/j.ceramint.2017.04.158
 | 
                     
                                
                                    
                                        | [46] | Duan, L., Zhang, X., Yue, K., Wu, Y., Zhuang, J. and Lu, W. (2017) Synthesis and Electrochemical Property of LiMn2O4 Porous Hollow Nanofiber as Cathode for Lithium-Ion Bat-teries. Nanoscale Research Letters, 12, 109. https://doi.org/10.1186/s11671-017-1879-1
 | 
                     
                                
                                    
                                        | [47] | Jing, M.X., Pi, Z.C., Zhai, H.A., Li, J.Q., Chen, L.L., Shen, S.Q., Xi, X.M. and Xiao, K.S. (2016) Three-Dimensional Li3V2(PO4)3/C Nanowire and Nanofiber Hybrid Membrane as a Self-Standing, Binder-Free Cathode for Lithium Ion Batteries. RSC Advances, 6, 71574-71580. https://doi.org/10.1039/C6RA13686A
 | 
                     
                                
                                    
                                        | [48] | Li, Y.H., Xiang, K.X., Shi, C.F., Zhou,W., Zhu, Y.R. and Chen, H. (2017) Frogegg-Like Li3V2(PO4)3/Carbon Composite with Three Dimensional Porous Structure and Its Improved Elec-trochemical Performance in Lithium Ion Batteries. Materials Letters, 204, 104-107. https://doi.org/10.1016/j.matlet.2017.05.098
 | 
                     
                                
                                    
                                        | [49] | Zhu, H., Wu, X.Z., Zan, L. and Zhang, Y.X. (2014) Three-Dimensional Macroporous Graphene-Li2FeSiO4 Composite as Cathode Material for Lithium-Ion Batteries with Superior Electrochemical Performances. ACS Applied Materials & Interfaces, 6, 11724-11733. https://doi.org/10.1021/am502408m
 | 
                     
                                
                                    
                                        | [50] | Bao, Y.H., Zhang, X.Y., Zhang, X., Yang, L., Zhang, X.Y., Chen, H.S., Yang, M. and Fang, D.N. (2016) Free-Standing and Flexible LiMnTiO4/Carbon Nanotube Cathodes for High Perfor-mance Lithium Ion Batteries. Journal of Power Sources, 321, 120-125. https://doi.org/10.1016/j.jpowsour.2016.04.121
 | 
                     
                                
                                    
                                        | [51] | Tang, C., Li, B.Q., Zhang, Q., Zhu, L., Wang, H.F., Shi, J.L. and Wei, F. (2016) CaO-Templated Growth of Hierarchical Porous Graphene for High-Power Lithium-Sulfur Battery Applications. Advanced Functional Materials, 26, 577-585. https://doi.org/10.1002/adfm.201503726
 | 
                     
                                
                                    
                                        | [52] | Su, D.W., Cortie, M. and Wang, G.X. (2017) Fabrication of N-Doped Graphene-Carbon Nanotube Hybrids from Prussian Blue for Lithium-Sulfur Batteries. Advanced Energy Materials, 7, Article ID: 1602014. https://doi.org/10.1002/aenm.201602014
 | 
                     
                                
                                    
                                        | [53] | Ummethala, R., Fritzsche, M., Jaumann, T., Balach, J., Oswald, S., Nowak, R., Sobczak, N., Kaban, I., Rümmeli, M.H. and Giebeler, L. (2018) Lightweight, Free-Standing 3D Intercon-nected Carbon Nanotube foam as a Flexible Sulfur Host for High Performance Lithium-Sulfur Battery Cathodes. Energy Storage Materials, 10, 206-215. https://doi.org/10.1016/j.ensm.2017.04.004
 | 
                     
                                
                                    
                                        | [54] | Lu, S., Chen, Y., Wu, X., Wang, Z. and Li, Y. (2014) Three-Dimensional Sulfur/Graphene Multifunctional Hybrid Sponges for Lithium-Sulfur Batteries with Large Areal Mass Loading. Scientific Reports, 4, Article No. 4629. https://doi.org/10.1038/srep04629
 | 
                     
                                
                                    
                                        | [55] | Li, H.P., Wei, Y.Q., Ren, J., Zhang, W.L., Zhang, C.W. and Zhang, Y.G. (2018) Three-Dimensionally Ordered Hierarchically Porous Polypyrrole Loading Sulfur as High-Performance Cathode for Lithium/Sulfur Batteries. Polymer, 137, 261-268. https://doi.org/10.1016/j.polymer.2018.01.022
 | 
                     
                                
                                    
                                        | [56] | Li, C.X., Yu, J.Y., Xue, S.L., Cheng, Z.H., Sun, G.Q., Zhang, J., Huang, R.D. and Qu, L.T. (2018) Wood-Inspired Mul-ti-Channel Tubular Graphene Network for High-Performance Lithium-Sulfur Batteries. Carbon, 139, 522-530. https://doi.org/10.1016/j.carbon.2018.07.023
 | 
                     
                                
                                    
                                        | [57] | Gu, X.X., Tong, C.J., Wen, B., Liu, L.M., Lai, C. and Zhang, S.Q. (2016) Ball-Milling Synthesis of ZnO@sulphur/Carbon Nanotubes and Ni(OH)2@sulphur/Carbon Nanotubes Composites for High-Performance Lithium-Sulphur Batteries. Electrochimica Acta, 196, 369-376. https://doi.org/10.1016/j.electacta.2016.03.018
 | 
                     
                                
                                    
                                        | [58] | Li, Z., Zhang, S.G., Zhang, J.H., Xu, M., Tatara, R., Dokko, K. and Watanabe, M. (2017) Three-Dimensionally Hierarchical Ni/Ni3S2/S Cathode for Lithium-Sulfur Battery. ACS Applied Materials & Interfaces, 9, 38477-38485. https://doi.org/10.1021/acsami.7b11065
 | 
                     
                                
                                    
                                        | [59] | Song, Y.Z., Zhao, W., Kong, L., Zhang, L., Zhu, X.Y., Shao, Y.L., Ding, F., Zhang, Q., Sun, J.Y. and Liu, Z.F. (2018) Synchronous Immobilization and Conversion of Polysulfides on a VO2-VN Binary Host Targeting High Sulfur Load Li-S Batteries. Energy & Environmental Science, 11, 2620-2630. https://doi.org/10.1039/C8EE01402G
 | 
                     
                                
                                    
                                        | [60] | Daniel, P., Tabor, L.M.R., Semion, K.S., Christoph, K., Dennis, S., Jo-seph, H.M., Shyam, D., Muratahan, A., Carlos, O., Hermann, T., et al. (2018) Accelerating the Discovery of Materials for Clean Energy in the Era of Smart Automation. Nature Reviews Materials, 3, 5-20. https://doi.org/10.1038/s41578-018-0005-z
 | 
                     
                                
                                    
                                        | [61] | Garg, A., Peng, X.B., Le, M.L.P., Pareek, K. and Chind, C.M.M. (2018) Design and Analysis of Capacity Models for Lithium-Ion Battery. Measurement, 120, 114-120. https://doi.org/10.1016/j.measurement.2018.02.003
 | 
                     
                                
                                    
                                        | [62] | Li, J., Zou, L.L., Tian, F., Dong, X.W., Zou, Z.Q. and Yang, H. (2016) Parameter Identification of Lithium-Ion Batteries Model to Predict Discharge Behaviors Using Heuristic Algorithm. Journal of the Electrochemical Society, 163, A1646-A1652. https://doi.org/10.1149/2.0861608jes
 | 
                     
                                
                                    
                                        | [63] | Garg, A., Vijayaraghavan, V., Zhang, J., Li, S. and Liang, X.Y. (2017) Design of Robust Battery Capacity Model for Electric Vehicle by Incorporation of Uncertainties. International Journal of Energy Research, 41, 1436-1451. https://doi.org/10.1002/er.3723
 |