摘要:
运用锥上的 Krasnoselskii’s 不动点定理,考虑了二阶积分边值问题
多个正解的存在性,其中0 < η < 1是常数,0 < λ < 2/n
2是参数,f:[0,1]×[0,∞)→[0,∞)是连续函数,a:[0,1]→[0,+∞)是连续函数,且在[0,1]的任一子区间上不恒为零.
Abstract:
In this paper, we study existence of multiple positive solutions for second-order ordinary differential equations with integral boundary problem
by the Krasnoselskii’s fixed point theorem on cones. where 0 < η < 1 is a constant, 0 < λ < 2/n
2 is a parameter, f:[0,1]×[0,∞)→[0,∞) is continuous, a:[0,1]→[0,+∞) is continuous, and a(t) ≢ 0 on any subinterval of [0,1].