1. 引言
脉冲效应普遍存在于系统状态在某些时刻突然发生变化的演化系统中,涉及医学、生物学、经济学、力学、电子学和电信等领域(参阅专著 [1] )。然而,系统的状态往往不仅受到突然的脉冲效应影响,而且还会受到随机扰动的影响,这极大激发了学者们研究具有脉冲效应的随机微分方程的兴趣。实际中,许多随机微分系统不仅依赖于当前的状态下还依赖于过去的历史状态,面对这样的情形常用随机泛函(时滞)微分方程来刻画 [2]。另一方面,现实系统不可避免地受到干扰而使整个系统失去控制从而导致不稳定性,因而研究随机微分方程的稳定性很有必要并成为一个重要的课题。然而,脉冲效应可以使一个不稳定的系统变得稳定(见 [3] ),因此研究脉冲随机微分方程的稳定性也很有必要(如 [4] [5] [6] [7] )。文献 [8] [9] [10] [11] 研究了脉冲随机泛函微分方程的稳定性。
很多实际问题比如不确定性问题,风险度量问题以及金融中的超对冲超定价问题等都涉及非线性期望。Peng [12] [13] 提出了一类非线性期望(即G-期望)来处理这类问题。在G-期望框架理论下, [12] [13] 进一步介绍了G-Brown运动以及相关的Itô积分。自此,关于G-Brown运动驱动的随机微分方程的研究逐渐得到学者们的关注并成为热点。G-Brown运动驱动的随机时滞微分方程的稳定性和稳定化方面的研究已取得了一定的成果(见文献 [14] [15] [16] [17] 及其中的参考文献)。文献 [18] [19] [20] 研究了G-Brown运动驱动的脉冲随机微分方程以及G-Brown运动驱动的脉冲随机泛函微分方程的稳定性。在上述成果的基础上,本文利用Razumikhin-型方法、G-Lyapunov函数技巧、随机分析和不等式方法,建立了一类G-Brown运动驱动的脉冲随机泛函微分方程是p-阶矩指数稳定的充分条件,丰富了该类方程稳定性方面的结论。
本文结构如下:第2节介绍了一些符号、假设条件和预备知识;第3节给出了主要结果,获得了G-Brown运动驱动的脉冲随机泛函微分方程的p-阶矩指数稳定的充分条件;第4节通过一个例子说明所得的结果。
2. 预备知识
记 
 。对任意的 
  表示Euclid范数。若 
  是一个向量或矩阵,
则 
  代表其转置,且 
  表示其范数, 
 。对 
 ,
  或 
  表
示 
  的内积。 
  和 
 。
关于定义在次线性空间 
  上的G-正态分布、G-期望、G-Brown运动以及相关的Itô积分和二次变差过程的详细介绍,可参阅文献 [12] [13]。对 
 ,
  上的一个分割 
  满足
 ,
 。给定 
 ,定义
 。
  表示 
  在范数 
  下的完备空间。
记 
 。 
  和 
  分别表示函数 
  在t时刻的右极限和左极限。令 
 ,
 ,此外在 
  中,除了有限个点
外均有 
  存在且 
 。对 
  和 
 ,
  表示所有 
  -可测的 
  -值随机过程。 
  满足 
 。记 
  是所有有界的 
  -值函数的集合。为了方便,定义以下集合:
 ,
 。
考虑如下形式的G-Brown运动驱动的脉冲随机泛函微分方程:
  (2.1)
初始值 
 。 
  是一个d-维的G-Brown运动。
 。 
  是G-Brown运动 
  的二次变差过程。
  是Borel-可测的,且对所有的 
  和 
 ,
 。脉冲函数 
  表示 
  在 
  时刻的脉冲扰动。发生脉冲时刻的点 
  满足 
 ,
  (当 
  时, 
  ),
 ,
 ,
 。
文中假设函数 
  以及 
  满足方程(2.1)解存在唯一的所有条件(见 [13] )。当方程(2.1)的初始值是 
  时,记方程(2.1)的解 
 。为了研究方程(2.1)的稳定性,假设对 
 ,
  以及 
 ,则方程(2.1)存在平凡解 
 。
注2.1文中采用Einstein记号,也就是在每一项里出现的指标i和j指的是求和,表示如下:
 
 
定义2.2 对 
 ,若存在一对正常数 
  和C满足
 
则称方程(2.1)的平凡解是p-阶矩指数稳定的。特别地,当 
  时,通常称方程(2.1)的平凡解是均方指数稳定的。
进一步给出一些符号标记。令 
  是关于变量X二阶连续可导且关于变量t一阶连续可导的全体非负函数 
  的集合,即 
  在 
  上是连续的,其中
 ,
 ,
  对每一个
 ,定义算子:
 
其中, 
  是表达形式如下的对称矩阵:
 
3. 主要结果
定理若存在一个函数 
  和正常数 
  和 
  满足
(i) 对 
 ,
  ;
(ii) 对所有的 
  和 
 ,
 
其中, 
  ;
(iii) 对所有的 
 ,
  和 
 ,
 
 
当 
 ,
  (这里 
  ), 
 ,
 ,
  在 
  上是连续的,对所有的 
 ,
 ,且 
  (这里
  ),则方程(2.1)的平凡解是p-阶矩指数稳定的。
证 取正数且满足 
 。根据条件(i)可推出
  (3.1)
接下来证明
  (3.2)
成立。为了证明(3.2)成立,需先证明
  (3.3)
成立。接下来利用反证法证明(3.3)成立。假设(3.3)不成立,则存在 
  满足
 
令 
 。注意 
  在 
  是连续的,故
  且
  (3.4)
  (3.5)
而且存在一个序列 
  ( 
  )使得
  (3.6)
和
  (3.7)
成立。根据条件(iii)可得
  (3.8)
因为在 
  上,方程(2.1)的解 
 ,函数 
  是连续的,所以对任意小的数 
 ,有
  (3.9)
利用G-Itô公式,计算出
 
进而,
  (3.10)
其中,
  (3.11)
由Peng [13] 可知 
  是一个G-鞅,因此 
 。对(3.10)式两边同时取期望并再次利用条件(iii)
可得
  (3.12)
运用Gronwall不等式,进一步得
 
即
  (3.13)
结合(3.4)可得
  (3.14)
这与(3.6)相矛盾,因此对k = 1,
 
成立。
利用数学归纳法,假设 
 ,
  (3.15)
成立。接下来继续证明
  (3.16)
成立。利用反证法假设(3.16)不成立。令
 
由条件(ii)和(3.15),注意到当 
  时,有
  (3.17)
成立。因为 
  在 
  上是连续的,所以可得 
  且
  (3.18)
  (3.19)
而且存在一个序列 
  ( 
  )满足
  (3.20)
对 
 ,存在一个整数 
  满足 
 。从而
 
  (3.21)
因此,利用条件(iii)得
  (3.22)
接着和前面证明(3.14)和(3.6)的矛盾方法一样,可得出与(3.20)的矛盾,综合说明了(3.16)是成立的。从而通过数学归纳法推出了对所有的 
 ,(3.2)式是成立的。进一步利用条件(i)得
 
事实上,因 
 ,所以存在一个数 
  使得 
  成立,这蕴含了
  (3.23)
成立。即方程(2.1)的平凡解是p-阶矩指数稳定的。证毕。
4. 例子
考虑如下形式的G-Brown运动驱动的随机时滞微分方程:
 
取 
 ,
 ,
 ,
 ,
 。计算得
 
取 
 ,
 ,
 ,
 ,
 ,
 ,进一步可得
 
由此可令 
 ,
 ,
 ,
 ,
 ,
 。
从而根据第三节中的定理可知方程(4.1)的平凡解是均方指数稳定的。
NOTES
*通讯作者。