|
[1]
|
Nakano, S., Eso, Y., Okada, H., et al. (2020) Recent Advances in Immunotherapy for Hepatocellular Carcinoma. Cancers, 12, 775. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
European Association for the Study of the Liver (2018) EASL Clinical Practice Guidelines: Management of Hepatocellular Carcinoma. Journal of Hepatology, 69, 182-236. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Zheng, Z., Liang, W., Wang, D., et al. (2015) Adjuvant Chemotherapy for Patients with Primary Hepatocellular Carcinoma: A Meta-Analysis. International Journal of Cancer, 136, E751-E759. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Hargadon, K.M., Johnson, C.E. and Williams, C.J. (2018) Immune Checkpoint Blockade Therapy for Cancer: An Overview of FDA-Approved Immune Checkpoint Inhibitors. International Immunopharmacology, 62, 29-39. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Van Allen, E.M., Miao, D., Schilling, B., et al. (2015) Genomic Correlates of Response to CTLA-4 Blockade in Metastatic Melanoma. Science (New York, N.Y.), 350, 207-211. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Rizvi, N.A., Hellmann, M.D., Snyder, A., et al. (2015) Cancer Immunology. Mutational Landscape Determines Sensitivity to PD-1 Blockade in Non-Small Cell Lung Cancer. Science (New York, N.Y.), 348, 124-128.
|
|
[7]
|
Hugo, W., Zaretsky, J.M., Sun, L., et al. (2017) Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma. Cell, 168, 542. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Matsushita, H., Vesely, M.D., Koboldt, D.C., et al. (2012) Cancer Exome Analysis Reveals a T-Cell-Dependent Mechanism of Cancer Immunoediting. Nature, 482, 400-404. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Riaz, N., Morris, L., Havel, J.J., et al. (2016) The Role of Neoantigens in Response to Immune Checkpoint Blockade. International Immunology, 28, 411-419. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Coulie, P.G., Van den Eynde, B.J., van der Bruggen, P. and Boon, T. (2014) Tumour Antigens Recognized by T Lymphocytes: At the Core of Cancer Immunotherapy. Nature Reviews Cancer, 14, 135-146. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Carreno, B.M., Magrini, V., Becker-Hapak, M., et al. (2015) Cancer Immunotherapy. A Dendritic Cell Vaccine Increases the Breadth and Diversity of Melanoma Neoantigen-Specific T Cells. Science (New York, N.Y.), 348, 803-808. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Snyder, A. and Chan, T.A. (2015) Immunogenic Peptide Discovery in Cancer Genomes. Current Opinion in Genetics & Development, 30, 7-16. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Ashburner, M., Ball, C.A., Blake, J.A., et al. (2000) Gene Ontology: Tool for the Unification of Biology. The Gene Ontology Consortium. Nature Genetics, 25, 25-29. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Kanehisa, M., Sato, Y., Kawashima, M., et al. (2016) KEGG as a Reference Resource for Gene and Protein Annotation. Nucleic Acids Research, 44, D457-D462. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Yu, G., Wang, L., Han, Y. and He, Q. (2012) clusterProfiler: An R Package for Comparing Biological Themes among Gene Clusters. OMICS, 16, 284-287. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Szklarczyk, D., Franceschini, A., Wyder, S., et al. (2015) STRING v10: Protein-Protein Interaction Networks, Integrated over the Tree of Life. Nucleic Acids Research, 43, D447-D452. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Shannon, P., Markiel, A., Ozier, O., et al. (2003) Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research, 13, 2498-2504. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Chin, C.-H., Chen, S.-H., Wu, H.-H., et al. (2014) cytoHubba: Identifying Hub Objects and Sub-Networks from Complex Interactome. BMC Systems Biology, 8, Article No. S11. [Google Scholar] [CrossRef]
|
|
[19]
|
Chen, B., Khodadoust, M.S., Liu, C.L., et al. (2018) Profiling Tumor Infiltrating Immune Cells with CIBERSORT. In: von Stechow, L., Ed., Cancer Systems Biology. Methods in Molecular Biology, Vol. 1711, Humana Press, New York, 243-259. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Chan, T.A., Yarchoan, M., Jaffee, E., et al. (2019) Development of Tumor Mutation Burden as an Immunotherapy Biomarker: Utility for the Oncology Clinic. Annals of Oncology, 30, 44-56. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Lawrence, M.S., Stojanov, P., Polak, P., et al. (2013) Mutational Heterogeneity in Cancer and the Search for New Cancer-Associated Genes. Nature, 499, 214-218. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Snyder, A., Makarov, V., Merghoub, T., et al. (2014) Genetic Basis for Clinical Response to CTLA-4 Blockade in Melanoma. The New England Journal of Medicine, 371, 2189-2199. [Google Scholar] [CrossRef]
|
|
[23]
|
Chalmers, Z.R., Connelly, C.F., Fabrizio, D., et al. (2017) Analysis of 100,000 Human Cancer Genomes Reveals the Landscape of Tumor Mutational Burden. Genome Medicine, 9, Article No. 34. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Innocenti, F., Ou, F., Qu, X., et al. (2019) Mutational Analysis of Patients with Colorectal Cancer in CALGB/SWOG 80405 Identifies New Roles of Microsatellite Instability and Tumor Mutational Burden for Patient Outcome. Journal of Clinical Oncology, 37, 1217-1227. [Google Scholar] [CrossRef]
|
|
[25]
|
Wang, X. and Li, M. (2019) Correlate Tumor Mutation Burden with Immune Signatures in Human Cancers. BMC Immunology, 20, Article No. 4. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Wu, T. and Dai, Y. (2017) Tumor Microenvironment and Therapeutic Response. Cancer Letters, 387, 61-68. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Hanahan, D. and Coussens, L.M. (2012) Accessories to the Crime: Functions of Cells Recruited to the Tumor Microenvironment. Cancer Cell, 21, 309-322. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Quail, D.F. and Joyce, J.A. (2013) Microenvironmental Regulation of Tumor Progression and Metastasis. Nature Medicine, 19, 1423-1437. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
De Plaen, E., Traversari, C., Gaforio, J.J., et al. (1994) Structure, Chromosomal Localization, and Expression of 12 Genes of the MAGE Family. Immunogenetics, 40, 360-369. [Google Scholar] [CrossRef]
|
|
[30]
|
Saito, T., Wada, H., Yamasaki, M., et al. (2014) High Expression of MAGE-A4 and MHC Class I Antigens in Tumor Cells and Induction of MAGE-A4 Immune Responses Are Prognostic Markers of CHP-MAGE-A4 Cancer Vaccine. Vaccine, 32, 5901-5907. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Rapoport, A.P., Aqui, N.A., Stadtmauer, E.A., et al. (2014) Combination Immunotherapy after ASCT for Multiple myeloma Using MAGE-A3/Poly-ICLC Immunizations Followed by Adoptive Transfer of Vaccine-Primed and Costimulated Autologous T Cells. Clinical Cancer Research, 20, 1355-1365. [Google Scholar] [CrossRef]
|
|
[32]
|
Mongkhoune, S., Xie, Y.A., Wang, Y.Q., et al. (2013) A Constructed HLA-A2-Restricted pMAGE-A1(278-286) Tetramer Detects Specific Cytotoxic T Lymphocytes in Tumour Tissues in Situ. The Journal of International Medical Research, 41, 1811-1824. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Makise, N., Morikawa, T., Nakagawa, T., et al. (2016) MAGE-A Expression, Immune Microenvironment, and Prognosis in Upper Urinary Tract Carcinoma. Human Pathology, 50, 62-69. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Cui, Z., Yu, X., Guo, L., et al. (2013) Combined Analysis of Serum Alpha-Fetoprotein and MAGE-A3-Specific Cytotoxic T Lymphocytes in Peripheral Blood for Diagnosis of Hepatocellular Carcinoma. Disease Markers, 35, Article ID: 907394. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Babiak, A., Steinhauser, M., Götz, M., et al. (2014) Frequent T Cell Responses against Immunogenic Targets in Lung Cancer Patients for Targeted Immunotherapy. Oncology Reports, 31, 384-390. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Balkwill, F. (2003) Chemokine Biology in Cancer. Seminars in Immunology, 15, 49-55. [Google Scholar] [CrossRef]
|
|
[37]
|
Borst, J., Ahrends, T., Bąbała, N., et al. (2018) CD4+ T Cell Help in Cancer Immunology and Immunotherapy. Nature Reviews Immunology, 18, 635-647. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Melssen, M. and Slingluff Jr., C.L. (2017) Vaccines Targeting Helper T Cells for Cancer Immunotherapy. Current Opinion in Immunology, 47, 85-92. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Kennedy, R. and Celis, E. (2008) Multiple Roles for CD4+ T Cells in Anti-Tumor Immune Responses. Immunological Reviews, 222, 129-144. [Google Scholar] [CrossRef]
|
|
[40]
|
Bevan, M.J. (2004) Helping the CD8+ T-Cell Response. Nature Reviews Immunology, 4, 595-602. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Castellino, F. and Germain, R.N. (2006) Cooperation between CD4+ and CD8+ T Cells: When, Where, and How. Annual Review of Immunology, 24, 519-540. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Ahrends, T., Spanjaard, A., Pilzecker, B., et al. (2017) CD4 T Cell Help Confers a Cytotoxic T Cell Effector Program Including Coinhibitory Receptor Downregulation and Increased Tissue Invasiveness. Immunity, 47, 848-861.E5. [Google Scholar] [CrossRef] [PubMed]
|