|
[1]
|
Stenzinger, A., Kajosch, T., Tag, C., et al. (2005) The Novel Protein PTPIP51 Exhibits Tissue and Cell-Specific Expression. Histochemistry and Cell Biology, 123, 19-28. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Stenzinger, A., Schreiner, D., Koch, P., et al. (2009) Cell and Molecular Biology of the Novel Protein Tyrosine-Phosphatase-Interacting Protein 51. International Review of Cell and Molecular Biology, 275, 183-246. [Google Scholar] [CrossRef]
|
|
[3]
|
Brobeil, A., Bobrich, M. and Wimmer, M. (2011) Protein Tyrosine Phosphatase Interacting Protein 51—A Jack of All Trades Protein. Cell and Tissue Research, 344, 189-205. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Schwarzer, R., Laurien, L. and Pasparakis, M. (2020) New Insights into the Regulation of Apoptosis, Necroptosis, and Pyroptosis by Receptor Interacting Protein Kinase 1 and Caspase-8. Current Opinion in Cell Biology, 63, 186-193. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Leano, J.B. and Slep, K.C. (2019) Structures of TOG1 and TOG2 from the Human Microtubule Dynamics Regulator CLASP1. PLoS ONE, 14, e0219823. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Yu, C., Han, W., Shi, T., et al. (2008) PTPIP51, a Novel 14-3-3 Binding Protein, Regulates Cell Morphology and Motility via Raf-ERK Pathway. Cell Signal, 20, 2208-2220. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Brobeil, A., Bobrich, M., Tag, C., et al. (2012) PTPIP51 in Protein Interactions—Regulation and in Situ Interacting Partners. Cell Biochemistry and Biophysics, 63, 211-222. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Hanoun, M., Zhang, D., Mizoguchi, T., et al. (2014) Acute Myelogenous Leukemia-Induced Sympathetic Neuropathy Promotes Malignancy in an Altered Hematopoietic Stem Cell Niche. Cell Stem Cell, 15, 365-375. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Oishi, K., Okano, H. and Sawa, H. (2007) RMD-1, a Novel Microtubule-Associated Protein, Functions in Chromosome Segregation in Caenorhabditis elegans. Cell Biology, 179, 1149-1162. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Benakanakere, M.R., Zhao, J., Finoti, L., et al. (2019) MicroRNA-663 Antagonizes Apoptosis Antagonizing Transcription Factor to Induce Apoptosis in Epithelial Cells. Apoptosis, 24, 108-118. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Lee, Y.S., Kalimuthu, K., Park, Y.S., et al. (2020) BAX-Dependent Mitochondrial Pathway Mediates the Crosstalk between Ferroptosis and Apoptosis. Apoptosis, 25, 625-631. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
肖玉霞. 蛋白酪氨酸磷酸酶相互作用蛋白51的研究进展[J]. 国际口腔医学杂志, 2012, 39(5): 679-682.
|
|
[13]
|
Gomez-Suaga, S., Paillusson, R., Stoica, W., et al. (2017) The ER-Mitochondria Tethering Complex VAPB-PTPIP51 Regulates Autophagy. Current Biology, 27, 371-385. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Qiao, X., Jia, S., Ye, J., et al. (2017) PTPIP51 Regulates Mouse Cardiac Ischemia/Reperfusion through Mediating the Mitochondria-SR Junction. Scientific Reports, 7, Article No. 45379. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Rimessi, A., Pozzato, C., Carparelli, L., et al. (2020) Pharmacological Modulation of Mitochondrial Calcium Uniporter Controls Lung Inflammation in Cystic Fibrosis. Science Advances, 6, eaax9093. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Liu, Z., Zhu, G., Getzenberg, R.H., et al. (2015) The Upregulation of PI3K/Akt and MAP Kinase Pathways Is Associated with Resistance of Microtubule-Targeting Drugs in Prostate Cancer. Journal of Cellular Biochemistry, 116, 1341-1349. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Antolín-Novoa, S., Blanco-Campanario, E., Antón, A., et al. (2015) Adjuvant Regimens with Trastuzumab Administered for Small HER2-Positive Breast Cancer in Routine Clinical Practice. Clinical and Translational Oncology, 17, 862-869. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Moasser, M.M. (2007) The Oncogene HER2: Its Signaling and Transforming Functions and Its Role in Human Cancer Pathogenesis. Oncogene, 26, 6469-6487. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Dietel, E., Brobeil, A. and Gattenlöhner, S. (2018) The Importance of the Right Framework: Mitogen-Activated Protein Kinase Pathway and the Scaffolding Protein PTPIP51. International Journal of Molecular Sciences, 19, 3282. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Dietel, E., Brobeil, A., Tag, C., et al. (2018) Effectiveness of EGFR/HER2-Targeted Drugs Is Influenced by the Downstream Interaction Shifts of PTPIP51 in HER2-Amplified Breast Cancer Cells. Oncogenesis, 7, 64. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Peiró, G., Ortiz-Martínez, F., Gallardo, M.A., et al. (2014) Src, a Potential Target for Overcoming Trastuzumab Resistance in HER2-Positive Breast Carcinoma. British Journal of Cancer, 111, 689-695. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Dietel, E., Brobeil, A., Tag, C., et al. (2020) PTPIP51 Crosslinks the NFκB Signaling and the MAPK Pathway in SKBR3 Cells. Future Science OA, 6, FSO463. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Davis, M.E. (2016) Glioblastoma: Overview of Disease and Treatment. Clinical Journal of Oncology Nursing, 20, S2-S8. [Google Scholar] [CrossRef]
|
|
[24]
|
Jovčevska, I., Kočevar, N. and Komel, R. (2013) Glioma and Glioblastoma—How Much Do We (Not) Know? Molecular and Clinical Oncology, 1, 935-941. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Verhaak, R.G., Hoadley, K.A., Purdom, E., et al. (2010) Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell, 17, 98-110. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Loew, S., Schmidt, U., Unterberg, A. and Halatsch, M. (2009) The Epidermal Growth Factor Receptor as a Therapeutic Target in Glioblastoma Multiforme and Other Malignant Neoplasms. Anti-Cancer Agents in Medicinal Chemistry, 9, 703-715. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Chan, X.Y., Singh, A., Osman, N., et al. (2017) Role Played by Signalling Pathways in Overcoming BRAF Inhibitor Resistance in Melanoma. International Journal of Molecular Sciences, 18, E1527. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Davis, E.J., Johnson, D.B., Sosman, J.A. and Chandra, S. (2018) Melanoma: What Do All the Mutations Mean? Cancer, 124, 3490-3499. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Amaral, T., Sinnberg, T., Meier, F., et al. (2017) The Mitogen-Activated Protein Kinase Pathway in Melanoma Part I—Activation and Primary Resistance Mechanisms to BRAF Inhibition. European Journal of Cancer, 73, 85-92. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Kantarjian, H., Brien, S., Jabbour, E., et al. (2012) Improved Survival in Chronic Myeloid Leukemia since the Introduction of Imatinib Therapy: A Single-Institution Historical Experience. Blood, 119, 1981-1987. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Brobeil, A., Bobrich, M., Graf, M., et al. (2011) PTPIP51 Is Phosphorylated by Lyn and c-Src Kinases Lacking Dephosphorylation by PTP1B in Acute Myeloid Leukemia. Leukemia Research, 35, 1367-1375. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Koch, P., Stenzinger, A., Viard, M., et al. (2008) The Novel Protein PTPIP51 Is Expressed in Human Keratinocyte Carcinomas and Their Surrounding Stroma. Journal of Cellular and Molecular Medicine, 12, 2083-2095. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Koch, P., Viard, M., Stenzinger, A., et al. (2009) Expression Profile of PTPIP51 in Mouse Brain. The Journal of Comparative Neurology, 517, 892-905. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Brobeil, A., Viard, M., Petri, M.K., et al. (2015) Memory and PTPIP51-A New Protein in Hippocampus and Cerebellum. Molecular and Cellular Neuroscience, 64, 61-73. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Appel-Cresswell, S., Vilarino-Guell, C., Encarnacion, M., et al. (2013) Alpha-Synuclein p.H50Q, a Novel Pathogenic Mutation for Parkinson’s Disease. Movement Disorders, 28, 811-813. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Gómez-Suaga, P., Pérez-Nievas, B.G., Glennon, E.B., et al. (2019) The VAPB-PTPIP51 Endoplasmic Reticulum-Mitochondria Tethering Proteins Are Present in Neuronal Synapses and Regulate Synaptic Activity. Acta Neuropathologica Communications, 7, 35. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Paillusson, S., Gomez-Suaga, P., Stoica, R., et al. (2017) α-Synuclein Binds to the ER-Mitochondria Tethering Protein VAPB to Disrupt Ca2+ Homeostasis and Mitochondrial ATP Production. Acta Neuropathologica, 134, 129-149. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Oba, T., Saito, T., Asada, A., et al. (2020) Microtubule Affinity-Regulating Kinase 4 with an Alzheimer’s Disease-Related Mutation Promotes Tau Accumulation and Exacerbates Neurodegeneration. Journal of Biological Chemistry, 295, 17138-17147. [Google Scholar] [CrossRef]
|
|
[39]
|
Schreiner, B., Hedskog, L., Wiehager, B., et al. (2015) Amyloid-β Peptides Are Generated in Mitochondria-Associated Endoplasmic Reticulum Membranes. Journal of Alzheimer’s Disease, 43, 369-374. [Google Scholar] [CrossRef]
|
|
[40]
|
Lau, D.H.W., Paillusson, S., Hartopp, N., et al. (2020) Disruption of Endoplasmic Reticulum-Mitochondria Tethering Proteins in Post-Mortem Alzheimer’s Disease Brain. Neurobiology of Disease, 14, Article ID: 105020. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Puri, R., Cheng, X.T., Lin, M.Y., et al. (2019) Mul1 Restrains Parkin-Mediated Mitophagy in Mature Neurons by Maintaining ER-Mitochondrial Contacts. Nature Communications, 10, 3645. [Google Scholar] [CrossRef] [PubMed]
|