|
[1]
|
商娜, 刘慧珍, 李芳, 刘芦姗, 王丰容, 李俊玉, 王雅慧, 李培兰, 郭树彬. 甲状腺激素水平、TOAST分型与急诊急性缺血性脑卒中患者短期预后的关系研究[J]. 实用心脑肺血管病杂志, 2020, 28(12): 40-45+51.
|
|
[2]
|
刘丽娜, 林财威, 王香华, 刘伟, 张飞, 王旭东. 危重症患者血清甲状腺素水平对预后的影响[J]. 中国临床医生, 2014, 42(12): 45-46.
|
|
[3]
|
Lamba, N., Liu, C., Zaidi, H., Broekman, M.L.D., Simjian, T., Shi, C., Doucette, J., Ren, S., Smith, T.R., Mekary, R.A. and Bunevicius, A. (2018) A Prognostic Role for Low Tri-Iodothyronine Syndrome in Acute Stroke Patients: A Systematic Review and Meta-Analysis. Clinical Neurology and Neurosurgery, 169, 55-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
袁二燕, 苏艳超, 王志强. 正常甲状腺病态综合征与危重症[J]. 中国实用医药, 2015, 10(5): 77-78.
|
|
[5]
|
山媛, 蒋锋, 崔小丽. 血清游离甲状腺素水平与甲状腺激素水平正常的脑梗死患者颈动脉粥样硬化斑块的关系研究[J]. 实用心脑肺血管病杂志, 2018, 26(11): 37-41.
|
|
[6]
|
徐明然, 祝滨, 胡颖, 陈蕾, 沙霞, 王璐, 卫清琪, 姜欣, 钟琪, 孙晓江. 低三碘甲状腺原氨酸综合征与急性脑卒中的相关性[J]. 中国老年学杂志, 2016, 36(12): 2906-2907.
|
|
[7]
|
梁雁, 吴泳, 伍秀宇, 陈钢涛, 梁汉周, 黄丹丹. 缺血性脑卒中患者血清FT3、FT4、TSH水平变化的临床意义[J]. 中国当代医药, 2016, 23(1): 64-66+70.
|
|
[8]
|
李峥嵘, 刘芸芸, 季永欣. 动态检测甲状腺激素水平在急性脑卒中的应用价值[J]. 现代实用医学, 2019, 31(3): 334-336.
|
|
[9]
|
Jiang, X., Xing, H., Wu, J., Du, R., Liu, H., Chen, J., Wang, J., Wang, C. and Wu, Y. (2017) Prognostic Value of Thyroid Hormones in Acute Ischemic Stroke—A Meta Analysis. Scientific Reports, 7, Article No. 16256. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Suda, S., Shimoyama, T., Nagai, K., Arakawa, M., Aoki, J., Kanamaru, T., Suzuki, K., Sakamoto, Y., Takeshi, Y., Matsumoto, N., Nishiyama, Y., Nito, C., Mishina, M. and Kimura, K. (2018) Low Free Triiodothyronine Predicts 3-Month Poor Outcome after Acute Stroke. Journal of Stroke & Cerebrovascular Diseases, 27, 2804-2809. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Suda, S., Muraga, K., Kanamaru, T., Okubo, S., Abe, A., Aoki, J., Suzuki, K., Sakamoto, Y., Shimoyama, T., Nito, C. and Kimura, K. (2016) Low Free Triiodothyronine Predicts Poor Functional Outcome after Acute Ischemic Stroke. Journal of the Neurological Sciences, 368, 89-93. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Dhital, R., Poudel, D.R., Tachamo, N., Gyawali, B., Basnet, S., Shrestha, P. and Karmacharya, P. (2017) Ischemic Stroke and Impact of Thyroid Profile at Presentation: A Systematic Review and Meta-analysis of Observational Studies. Journal of Stroke & Cerebrovascular Diseases, 26, 2926-2934. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Chaker, L., Baumgartner, C., den Elzen, W.P., Collet, T.H., Ikram, M.A., Blum, M.R., Dehghan, A., Drechsler, C., Luben, R.N., Portegies, M.L., Iervasi, G., Medici, M., Stott, D.J., Dullaart, R.P., Ford, I., Bremner, A., Newman, A.B., Wanner, C., Sgarbi, J.A., Dörr, M., Longstreth Jr., W.T., Psaty, B.M., Ferrucci, L., Maciel, R.M., Westendorp, R.G., Jukema, J.W., Ceresini, G., Imaizumi, M., Hofman, A., Bakker, S.J., Franklyn, J.A., Khaw, K.T., Bauer, D.C., Walsh, J.P., Razvi, S., Gussekloo, J., Völzke, H., Franco, O.H., Cappola, A.R., Rodondi, N. and Peeters, R.P. (2016) Thyroid Studies Collaboration. Thyroid Function within the Reference Range and the Risk of Stroke: An Individual Participant Data Analysis. Journal of Clinical Endocrinology & Metabolism, 101, 4270-4282. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Li, L.Q., Xu, X.Y., Li, W.Y., Hu, X.Y. and Lv, W. (2019) The Prognostic Value of Total T3 after Acute Cerebral Infarction Is Age-Dependent: A Retrospective Study on 768 Patients. BMC Neurology, 19, Article No. 54. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Feng, X., Zhou, X., Yu, F., Liu, Z., Wang, J., Li, Z., Zhan, Q., Yang, Q., Liu, Y. and Xia, J. (2019) Low-Normal Free Triiodothyronine and High Leukocyte Levels in Relation to Stroke Severity and Poor Outcome in Acute Ischemic Stroke with Intracranial Atherosclerotic Stenosis. International Journal of Neuroscience, 129, 635-641. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Sadana, P., Coughlin, L., Burke, J., Woods, R. and Mdzinarishvili, A. (2015) Anti-Edema Action Ofthyroid Hormone in MCAO Model of Ischemic Brain Stroke: Possible Association with AQP4 Modulation. Journal of the Neurological Sciences, 354, 37-45. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Badaut, J., Lasbennes, F., Magistretti, P.J. and Regli, L. (2002) Aquaporins in Brain: Distribution, Physiology, and Pathophysiology. Journal of Cerebral Blood Flow & Metabolism, 22, 367-378. [Google Scholar] [CrossRef]
|
|
[18]
|
Cheng, S.Y., Leonard, J.L. and Davis, P.J. (2010) Molecular Aspects of Thyroid Hormone Actions. Endocrine Reviews, 31, 139-170. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Gorgulu, A., Kins, T., Cobanoglu, S., Unal, F., Izgi, N.I., Yanik, B., et al. (2000) Reduction of Edema and Infarction by Memantine and MK-801 after Focal Cerebral Ischaemia and Reperfusion in Rat. Acta Neurochirurgica, 142, 1287-1292. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Talhada, D., Feiteiro, J., Costa, A.R., Talhada, T., Cairrão, E., Wieloch, T., Englund, E., Santos, C.R., Gonçalves, I. and Ruscher, K. (2019) Triiodothyronine Modulates Neuronal Plasticity Mechanisms to Enhance Functional Outcome after Stroke. Acta Neuropathologica Communications, 7, Article No. 216. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
de Lange, P., Cioffi, F., Senese, R., Moreno, M., Lombardi, A., Silvestri, E., et al. (2011) Nonthyrotoxic Prevention of Diet-Induced Insulin Resistance by 3,5-diiodo-L-thyronine in Rats. Diabetes, 60, 2730-2739. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Genovese, T., Impellizzeri, D., Ahmad, A., Cornelius, C., Campolo, M., Cuzzocrea, S. and Esposito, E. (2013) Post-Ischaemic Thyroid Hormone Treatment in a Rat Model of Acute Stroke. Brain Research, 1513, 92-102. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Skvortsova, V.I., Platonova, I.A., Shamalov, N.A., et al. (2016) Clinical and Immunobiochemical Study of Efficacy and Stress-Protective Properties of Thyroliberin at the Acute Stage of Carotid Ischemic Stroke. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova, No. s16, 5l-59.
|
|
[24]
|
Sayre, N.L., Sifuentes, M., Holstein, D., Cheng, S.Y., Zhu, X. and Lechleiter, J.D. (2017) Stimulation of Astrocyte Fatty acid Oxidation by Thyroid Hormone Is Protective against Ischemic Stroke-Induced Damage. Journal of Cerebral Blood Flow & Metabolism, 37, 514-527. [Google Scholar] [CrossRef]
|
|
[25]
|
Talhada, D., Santos, C.R.A., Gonçalves, I. and Ruscher K (2019) Thyroid Hormones in the Brain and Their Impact in Recovery Mechanisms after Stroke. Frontiers in Neurology, 10, Article No. 1103. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Lourbopoulos, A., Mourouzis, I., Karapanayiotides, T., Nousiopoulou, E., Chatzigeorgiou, S., Mavridis, T., et al (2014) Changes in Thyroid Hormone Receptors after Permanent Cerebral Ischemia in Male Rats. Journal of Molecular Neuroscience, 54, 78-91. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Anyetei-Anum, C.S., Roggero, V.R. and Allison, L.A. (2018) Thyroid Hormone Receptor Localizationin Target Tissues. Journal of Endocrinology, 237, R19-R34. [Google Scholar] [CrossRef]
|
|
[28]
|
Carlson, D.J., Strait, K.A., Schwartz, H.L. and Oppenheimer, J.H. (1994) Immunofluorescent Localization of Thyroid Hormone Receptor Isoforms in Glial Cells of Rat Brain. Endocrinology, 135, 1831-1836. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Yasuda, R. (2017) Biophysics of Biochemical Signaling in Dendritic Spines: Implications in Synaptic Plasticity. Biophysical Journal, 113, 2152-2159. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Brown, C.E., Boyd, J.D. and Murphy, T.H. (2010) Longitudinal in Vivo Imaging Reveals Balanced and Branch-Specific Remodeling of Mature Cortical Pyramidal Dendritic Arbors after Stroke. Journal of Cerebral Blood Flow & Metabolism, 30, 783-791. [Google Scholar] [CrossRef]
|
|
[31]
|
Kwon, S.E. and Chapman, E.R. (2011) Synaptophysin Regulates the Kinetics of Synaptic Vesicle Endocytosis in Central Neurons. Neuron, 70, 847-854. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Südhof, T.C. (2012) Calcium Control of Neurotransmitter Release. Cold Spring Harbor Perspectives in Biology, 4, Article No. a011353. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Südhof, T.C. (2013) A Molecular Machine for Neurotransmitter Release: Synaptotagmin and Beyond. Nature Medicine, 19, 1227-1231. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Turrigiano, G. (2011) Too Many Cooks? Intrinsic and Synaptic Homeostatic Mechanisms in Cortical Circuit Refinement. Annual Review of Neuroscience, 34, 89-103. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Turrigiano, G. (2012) Homeostatic Synaptic Plasticity: Local and Global Mechanisms for Stabilizing Neuronal Function. Cold Spring Harbor Perspectives in Biology, 4, Article No. a005736. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Clarkson, A.N., Overman, J.J., Zhong, S., Mueller, R., Lynch, G. and Carmichael, S.T. (2011) AMPA Receptor-Induced local Brain-Derived Neurotrophic Factor Signaling Mediates Motor Recovery after Stroke. Journal of Neuroscience, 31, 3766-3775. [Google Scholar] [CrossRef]
|
|
[37]
|
Isaac, J.T.R., Ashby, M. and McBain, C.J. (2007) The Role of the GluR2 Subunit in AMPA Receptor Function and Synaptic Plasticity. Neuron, 54, 859-871. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Seung, H.J., Hyeong, S.C., Ki, J.K., Qing, Z.L. and Sung, K.W. (2009) Electrophysiological Characterization of AMPA and NMDA Receptors in Rat Dorsal Striatum. Korean Journal of Physiology & Pharmacology, 13, 209-214. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Losi, G., Garzon, G. and Puia, G. (2008) Nongenomic Regulation of Glutamatergic Neurotransmission in Hippocampus by Thyroid Hormones. Neuroscience, 151, 155-163. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Boddington, L.J. and Reynolds, J.N.J. (2017) Targeting Interhemispheric Inhibition with Neuromodulation to Enhance Stroke Rehabilitation. Brain Stimulation, 10, 214-222. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Carmichael, S.T. (2012) Brain Excitability in Stroke: The Yin and Yang of Stroke Progression. Archives of Neurology, 69, 161-167. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Ward, N.S. (2017) Restoring Brain Function after Stroke—Bridging the Gap between Animals and Humans. Nature Reviews Neurology, 13, 244-255. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Alia, C., Spalletti, C., Lai, S., Panarese, A., Micera, S. and Caleo, M. (2016) Reducing GABA A-Mediated Inhibition Improves Forelimb Motor Function after Focal Cortical Stroke in Mice. Scientific Reports, 29, Article No. 37823. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Clarkson, A.N., Huang, B.S., Macisaac, S.E., Mody, I. and Carmichael, S.T. (2010) Reducing Excessive GABA-Mediated Tonic Inhibition Promotes Functional Recovery after Stroke. Nature, 468, 305-309. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Zeiler, S.R., Gibson, E.M., Hoesch, R.E., Li, M.Y., Worley, P.F., O’Brien, R.J., et al. (2013) Medial Premotor Cortex Shows a Reduction in Inhibitory Markers and Mediates Recovery in a Mouse Model of Focal Stroke. Stroke, 44, 483-489. [Google Scholar] [CrossRef]
|
|
[46]
|
Sammali, E., Alia, C., Vegliante, G., Colombo, V., Giordano, N., Pischiutta, F., et al. (2017) Intravenous Infusion of Human Bone Marrow Mesenchymal Stromal Cells Promotes Functional Recovery and Neuroplasticity after Ischemic Stroke in Mice. Scientific Reports, 7, Article No. 6962. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Mokhtari, T., Akbari, M., Malek, F., Kashani, I.R., Rastegar, T., Noorbakhsh, F., Ghazi-Khansari, M., Attari, F. and Hassanzadeh, G. (2017) Improvement of Memory and Learning by Intracerebroventricular Microinjection of T3 in Rat Model of Ischemic Brain Stroke Mediated by Upregulation of BDNF and GDNF in CA1 Hippocampal Region. DARU Journal of Pharmaceutical Sciences, 25, Article No. 4. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Sutherland, B.A., Neuhaus, A.A., Couch, Y., Balami, J.S., DeLuca, G.C., Hadley, G., et al. (2016) The Transient Intraluminal Filament Middle Cerebral Artery Occlusion Model as a Model of Endovascular Thrombectomy in Stroke. Journal of Cerebral Blood Flow & Metabolism, 36, 363-369. [Google Scholar] [CrossRef]
|
|
[49]
|
Shahjouei, S., Cai, P.Y., Ansari, S., Sharififar, S., Azari, H., Ganji, S., et al. (2016) Middle Cerebral Artery Occlusion Model of Stroke in Rodents. Journal of Vascular and Inter-Ventional Neurology, 8, 1-8.
|
|
[50]
|
Erfani, S., Khaksari, M., Oryan, S., Shamsaei, N., Aboutaleb, N., Nikbakht, F., et al. (2015) Visfatin Reduces Hippocampal CA1 Cells Death and Improves Learning and Memory Deficits after Transient Global Ischemia/Reperfusion. Neuropeptides, 49, 63-68. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Chen, A., Xiong, L.-J., Tong, Y. and Mao, M. (2013) The Neuroprotective Roles of BDNF in Hypoxic Ischemic Brain Injury (Review). Biomedical Reports, 1, 167-176. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Duarte, E.P., Curcio, M., Canzoniero, L.M. and Duarte, C.B. (2012) Neuroprotection by GDNF in the Ischemic Brain. Growth Factors, 30, 242-257. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Sui, L., Ren, W.-W. and Li, B.-M. (2010) Administration of Thyroid Hormone Increases Reelin and Brain-Derived Neurotrophic Factor Expression in Rat Hippocampus in Vivo. Brain Research, 1313, 9-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Campolo, M., Genovese, T., Impellizzeri, D., Ahmad, A., Cornelius, C., Cuzzocrea, S., et al. (2013) Post-Ischemic Thyroid Hormone Treatment in a Rat Model of Acute Stroke. The FASEB Journal, 27, 662.17. [Google Scholar] [CrossRef]
|
|
[55]
|
Davis, P.J. (2011) Integrated Nongenomic and Genomic Actions of Thyroid Hormone on Blood Vessels. Current Opinion in Endocrinology & Diabetes and Obesity, 18, 293-294. [Google Scholar] [CrossRef]
|
|
[56]
|
Zhang, Y. and Meyer, M.A. (2010) Clinical Analysis on Alteration of Thyroid Hormones in the Serum of Patients with Acute Ischemic Stroke. Stroke Research and Treatment, 2010, Article ID: 290678. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Hiroi, Y., Kim, H.-H., Ying, H., Furuya, F., Huang, Z., Simoncini, T., et al. (2006) Rapid Nongenomic Actions of Thyroid Hormone. Proceedings of the National Academy of Sciences of the United States of America, 103, 14104-14109. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Lin, H.-Y., Davis, F.B., Luidens, M.K., Mousa, S.A., Cao, J.H., Zhou, M., et al. (2011) Molecular Basis for Certain Neuroprotective Effects of Thyroid Hormone. Frontiers in Molecular Neuroscience, 4, Article No. 29. [Google Scholar] [CrossRef] [PubMed]
|