[1]
|
Sakuma, Y., Takemoto, K., Hirose, S., Usuki, T. and Yokoyama, N. (2005) Controlling Emission Wavelength from InAs Self-Assembled Quantum Dots on InP (0 0 1) during MOCVD. Physica E: Low-Dimensional Systems and Nanostructures, 26, 81-85. https://doi.org/10.1016/j.physe.2004.08.028
|
[2]
|
Zhang, X.B., Ryou, J.H. and Dupuis, R.D. (2006) Growth of InAlAs Self-Assembled Quantum Dots on InAlGaAs/InP for 1.55 μm Laser Applications by Metalorganic Chemical Vapor Deposition. Applied Physics Letters, 89, Article ID: 191104. https://doi.org/10.1063/1.2385693
|
[3]
|
Gilfert, C., Ivanov, V., Oehl, N., Yacob, M. and Reithmaier, J.P. (2011) High Gain 1.55 μm Diode Lasers Based on InAs Quantum Dot Like Active Regions. Applied Physics Letters, 98, Article ID: 201102.
https://doi.org/10.1063/1.3590727
|
[4]
|
Semenova, S.E., Kulkova, I.V., Kadkhodazadeh, S., Schubert, F.M. and Yvind, K. (2012) Metal Organic Vapor-Phase Epitaxy of InAs/InGaAsP Quantum Dots for Laser Applications at 1.5 μm. Applied Physics Letters, 99, Article ID: 101106. https://doi.org/10.1063/1.3634029
|
[5]
|
Akahane, K. and Yamamoto, N. (2013) Fabrication of Low-Density Self-Assembled InAs Quantum Dots on InP(311)B Substrate by Molecular Beam Epitaxy. Journal of Crystal Growth, 378, 450-453.
https://doi.org/10.1016/j.jcrysgro.2012.12.174
|
[6]
|
Nishi, K., Saito, H., Sugou, S. and Lee, J.S. (1999) A Narrow Photoluminescence Linewidth of 21 meV at 1.35 μm from Strain-Reduced InAs Quantum Dots Covered by In0.2Ga0.8As Grown on GaAs Substrates. Applied Physics Letters, 74, 1111-1113. https://doi.org/10.1063/1.123459
|
[7]
|
Jia, R., Jiang, D.S., Liu, H.Y., Wei, Y.Q., Xu, B. and Wang, Z.G. (2002) Influence of Combined InAlAs and InGaAs Strain-Reducing Laser on Luminescence Properties of InAs/GaAs Quantum Dots. Journal of Crystal Growth, 234, 354-358. https://doi.org/10.1016/S0022-0248(01)01721-3
|
[8]
|
Hsieh, T.P., Chiu, P.C., Chyi, J.I., Yeh, N.T., Ho, W.J., Chang, W.H. and Hsu, T.M. (2005) 1.55 μm Emission from InAs Quantum Dots Grown on GaAs. Applied Physics Letters, 87, Article ID: 151903.
https://doi.org/10.1063/1.2099536
|
[9]
|
Huffaker, D.L., Park, G., Zou, Z., Shchekin, O.B. and Deppe, D.G. (1998) 1.3 μm Room-Temperature GaAs-Based Quantum-Dot Laser. Applied Physics Letters, 73, 2564. https://doi.org/10.1063/1.122534
|
[10]
|
Park, G., Shchekin, O.B., Huffaker, D.L. and Deppe, D.G. (2000) Low-Threshold Oxide-Confined 1.3-μm Quantum-Dot Laser. IEEE Photonics Technology Letters, 13, 230.
|
[11]
|
Amano, T., Sugaya, T. and Komori, K. (2006) 1.3-μm InAs Quantum-Dot Laser with High Dot Density and High Uniformity. IEEE Photonics Technology Letters, 18, 619-621. https://doi.org/10.1109/LPT.2006.870143
|
[12]
|
Han, Q., Niu, Z., Ni, H., Zhang, S., Yang, X., Du, Y., Tong, C., Zhao, H., Xu, Y., Peng, H. and Wu, R. (2006) Chinese Optics Letters, 4, 413.
|
[13]
|
Maximov, M.V., Tsasul’nikov, A.F., Volovik, B.V., Bedarev, D.A., Egorov, A.Yu., Zhukov, A.E., Kovsh, A.R., Bert, N.A., Ustinov, V.M., Kopev, P.S., Alferov, Zh.I., Ledetsovb, N.N., Bimberg, D., Soshnikove, I.P. and Werner, P. (1999) Optical and Structural Properties of InAs Quantum Dots in a GaAs Matrix for a Spectral Range Up to 1.7 μm. Applied Physics Letters, 75, 2347-2349. https://doi.org/10.1063/1.125010
|
[14]
|
Mi, Z., Bhattacharya, P. and Yang, J. (2006) Growth and Characteristics of Ultralow Threshold 1.45 μm Metamorphic InAs Tunnel Injection Quantum Dot Lasers on GaAs. Applied Physics Letters, 89, Article ID: 153109.
https://doi.org/10.1063/1.2358847
|
[15]
|
Mi, Z., Wu, C., Yang, J. and Bhattacharya, P. (2008) Molecular Beam Epitaxial Growth and Characteristics of 1.52 μm Metamorphic InAs Quantum Dot Lasers on GaAs. Journal of Vacuum Science & Technology B, 26, 1153-1156.
https://doi.org/10.1116/1.2889386
|
[16]
|
Mizuno, H., Inoue, T., Kikuno, M., Kita, T., Wada, O., Mori, H. and Yasuda, H. (2007) Emission-Wavelength Extension of Nitrided InAs/GaAs Quantum Dots with Different Sizes. Journal of Crystal Growth, 301-302, 709-712.
https://doi.org/10.1016/j.jcrysgro.2006.11.082
|
[17]
|
Kudrawiec, R., Bank, S.R., Yuen, H.B., Bee, H., Wistey, M.A., Goddard, L.L., Harris Jr., J.S., Gladysiewicz, M., Motyka, M. and Misiewicz, J. (2007) Fermi Level Shift in GaInNAsSb/GaAs Quantum Wells upon Annealing Studied by Contactless Electroreflectance. Applied Physics Letters, 90, Article ID: 131905. https://doi.org/10.1063/1.2437729
|
[18]
|
Xin, Y.C., Vaughn, L.G., Dawson, L.R., Stintz, A., Lin, Y., Lester, L.F. and Huffaker, D.L. (2003) InAs Quantum-Dot GaAs-Based Lasers Grown on AlGaAsSb Metamorphic Buffers. Journal of Applied Physics 94, 2133.
https://doi.org/10.1063/1.1582229
|
[19]
|
Ripalda, J.M., Granados, D., Gonzalez, Y., Sanchez, A.M., Molina, S.I. and Garcia, J.M. (2005) Room Temperature Emission at 1.6 μm from InGaAs Quantum Dots Capped with GaAsSb. Applied Physics Letters, 87, Article ID: 202108. https://doi.org/10.1063/1.2130529
|
[20]
|
Ng, J.S., Liu, H.Y., Steer, M.J., Hopkinson, M. and David, J.P.R. (2006) Photoluminescence beyond 1.5 μm from InAs Quantum Dots. Microelectronics Journal, 37, 1468-1470. https://doi.org/10.1016/j.mejo.2006.05.007
|
[21]
|
Liu, H.Y., Qiu, Y., Jin, C.Y., Walther, T. and Cullis, A.G. (2008) 1.55 μm InAs Quantum Dots Grown on a GaAs Substrate Using a GaAsSb Metamorphic Buffer Layer. Applied Physics Letters, 92, Article ID: 111906.
https://doi.org/10.1063/1.2898895
|
[22]
|
Sitarek, P., Hsu, H.P., Huang, Y.S., Lin, J.M., Lin, H.H. and Tiong, K.K. (2009) Optical Studies of Type-I GaAs1−xSbx/GaAs Multiple Quantum Well Structures. Journal of Applied Physics, 105, Article ID: 123523.
https://doi.org/10.1063/1.3153975
|
[23]
|
Ohta, M., Kanto, T. and Yamaguchi, K. (2006) Self-Formation of High-Density and High-Uniformity InAs Quantum Dots on Sb/GaAs Layers by Molecular Beam Epitaxy. Journal of Applied Physics, 45, 3427.
https://doi.org/10.1143/JJAP.45.3427
|
[24]
|
Guimard, D., Nishioka, M., Tsukamoto, S. and Arakawa, Y. (2006) High Density InAs/GaAs Quantum Dots with Enhanced Photoluminescence Intensity Using Antimony Surfactant-Mediated Metal Organic Chemical Vapor Deposition. Applied Physics Letters, 89, Article ID: 183124. https://doi.org/10.1063/1.2385209
|
[25]
|
Guimard, D., Arakawa, Y., Ishida, M., Tsukamoto, S., Nishioka, M., Nakata, Y., Sudo, H. and Yamamoto, T. (2007) Ground State Lasing at 1.34 μm from InAs/GaAs Quantum Dots Grown by Antimony-Mediated Metal Organic Chemical Vapor Deposition. Applied Physics Letters, 90, Article ID: 241110. https://doi.org/10.1063/1.2748082
|
[26]
|
Guimard, D., Ishida, M., Hatori, N., Nakata, Y., Sudo, H., Yamamoto, T., Sugawara, M. and Arakawa, Y. (2008) CW Lasing at 1.35 μm from Ten InAs-Sb: GaAs Quantum-Dot Layers Grown by Metal-Organic Chemical Vapor Deposition. IEEE Photonics Technology Letters, 20, 827-829. https://doi.org/10.1109/LPT.2008.921831
|
[27]
|
Matsuura, T., Miyamoto, T., Ohta, M., Matsui, Y., Furuhata, T. and Koyama, F. (2005) PL Characteristics of InAs Quantum Dots with Sb Irradiation in Growth Interruption. Journal of Crystal Growth, 278, 51-56.
https://doi.org/10.1016/j.jcrysgro.2004.12.054
|
[28]
|
Kawaguchi, K., Ekawa, M., Akiyama, T., Kuwatsuka, H. and Sugawara, M. (2006) Surfactant-Related Growth of InAs1−xSbx Quantum Structures on InP(0 0 1) by Metalorganic Vapor-Phase Epitaxy. Journal of Crystal Growth, 291, 154-159. https://doi.org/10.1016/j.jcrysgro.2006.03.012
|
[29]
|
Gong, Z., Fang, Z.D., Xu, X.H., Miao, Z.H., Niu, Z.C. and Feng, S.L. (2004) Optical Characteristics of InAs Quantum Dots Capped with Short Period GaAs/InAs Superlattices and InGaAs Combination Layers. Solid State Communication, 132, 421-424. https://doi.org/10.1016/j.ssc.2004.03.046
|
[30]
|
You, M.H., Li, Z.G., Gao, X., Liu, X.D., Deng, Y., Liu, G.J., Li, L., Wei, Z.P. and Wang, X.H. (2012) Long Wavelength Strain-Engineered InAs Multi-Layer Stacks Quantum Dots Laser Diode on GaAs Substrate. Laser Physics, 22, 1673-1675. https://doi.org/10.1134/S1054660X12110187
|
[31]
|
李占国, 刘国军, 尤明慧, 李林, 李梅, 乔忠良, 邓昀, 王勇, 王晓华, 赵英杰, 李联合. 采用InGaSb柱形量子点实现高效率1.5 µm通讯波段激光器外延结构的外延生长设计及方法[P]. 中国, ZL200910066797.4. 2010-08.
|