学术期刊
切换导航
首 页
文 章
期 刊
投 稿
预 印
会 议
书 籍
新 闻
合 作
我 们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
核心OA期刊
Core OA Journal
数学与物理
Math & Physics
化学与材料
Chemistry & Materials
生命科学
Life Sciences
医药卫生
Medicine & Health
信息通讯
Information & Communication
工程技术
Engineering & Technology
地球与环境
Earth & Environment
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
合作期刊
Cooperation Journals
首页
经济与管理
金融
Vol. 2 No. 1 (January 2012)
期刊菜单
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
基于AC均线预测的股票交易策略及实证
Stock Trading Strategies Based on the AC Algorithm Moving Average Line Forecast and Empirically Study
DOI:
10.12677/fin.2012.21003
,
PDF
,
HTML
,
XML
,
被引量
作者:
田益祥
,
田伟
:
关键词:
均线预测
;
AC
;
交易策略
Moving Average Forecast; AC; Trading Strategies
摘要:
预测股价的趋势和拐点,特别是预测个股股价的拐点,一直是投资者和学术界十分关注的焦点问题,也是投资者短期投资成功的关键。本文利用均线的特点,结合相似体合成(AC)算法的优势,尝试对股价短期走势和拐点进行预测。在此基础上,提出一套短期股票投资的智能交易策略。任选30只股票进行实证说明交易策略的有效性,结果表明:基于AC算法均线预测的股票交易策略取得了显著的超额收益,小盘股投资效果优于大盘股。
Abstract:
Forecasting the trends and inflection point of the price, especially stock price, is the focus of the investors and the academic, and the key issues whether the short-term investment will success or not. This paper attempts to predict the trends and inflection point of the short-term stock price by the Analogy Com- plexion (AC) algorithm, taking advantage of the moving average’s features and superiority. Based on it, we propose a set of intelligent trading strategy used to short-term stock investment. To illustrate the effect- tiveness of the strategy, we randomly selected 30 stocks. The empirical result shows that the trading strategy based on the AC moving average forecasting receives a significant excess return and the performance of small- cap stocks is better than the large-cap stocks’.
文章引用:
田益祥, 田伟. 基于AC均线预测的股票交易策略及实证[J]. 金融, 2012, 2(1): 30-35.
http://dx.doi.org/10.12677/fin.2012.21003
参考文献
[
1
]
P. Xidonas, D. Askounis and J. Psarras. Common stock portfolio selection: A multiple criteria decision making methodology and an application to the Athens Stock Exchange. Operational Re- search, 2009, 9(1): 55-79.
[
2
]
S. G. M. Fifield, D. M. Power and D. G. S. Knipe. The perfor- mance of moving average rules in emerging stock markets. Applied Financial Economics, 2008, 19(18): 1513-1532.
[
3
]
J. Pinto, R. Neves and N. Horta. Fitness function evaluation for MA trading strategies based on genetic algorithms. New York: GECCO’11 Proceedings of the 13th Annual Conference Compa- nion on Genetic and Evolutionary Computation, 2009: 819-820.
[
4
]
K. Y. Huang, C. J. Jane. A hybrid model for stock market fore- casting and portfolio selection based on ARX, grey system and RS theories. Expert Systems with Applications, 2009, 36(3): 5387-5392.
[
5
]
E. N. Lorence. Athmospheric predictability is revealed by naturaly occurring analogues. Journal of the Atmospheric Sciences, 1969, 26: 636-646.
[
6
]
贺昌政. 自组织数据挖掘与经济预测[M]. 北京: 科学出版社, 2005.
投稿
为你推荐
友情链接
科研出版社
开放图书馆