|
[1]
|
Ostrom Quinn, T., Gittleman, H., Liao, P., Rouse, C., Chen, Y., Dowling, J., Wolinsky, Y., Kruchko, C. and Barnholtz-Sloan, J. (2014) CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2007-2011. Neuro-Oncology, 16, iv1-iv63. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Hossein, S.S., Mahtab, Z., Marzieh, L., Majid, G.-M., Ahmad, G., Zarei, J.H., Reza, S.H. and Amirhossein, S. (2019) Therapeutic Potential of Curcumin in the Treatment of Glioblastoma Multiforme. Current Pharmaceutical Design, 25, 333-342. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Zhang, J., Huang, K., Shi, Z., Zou, J., Wang, Y., Jia, Z., Zhang, A., Han, L., Yue, X., Liu, N., Jiang, T., You, Y., Pu, P. and Kang, C. (2011) High β-catenin/Tcf-4 Activity Confers Glioma Progression via Direct Regulation of AKT2 Gene Expression. Neuro-Oncology, 13, 600-609. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Mazurek, A., Luo, W., Krasnitz, A., Hicks, J., Scott, P.R. and Bruce, S. (2012) DDX5 Regulates DNA Replication and Is Required for Cell Proliferation in a Subset of Breast Cancer Cells. Cancer Discovery, 2, 812-825. [Google Scholar] [CrossRef]
|
|
[5]
|
Sarkar, M., Khare, V., Guturi, K.K.N., Das, N. and Ghosh, M.K. (2015) The DEAD Box Protein p68: A Crucial Regulator of AKT/FOXO3a Signaling Axis in Oncogenesis. Oncogene, 34, 5843-5856. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Clarke, J., Penas, C., Pastori, C., Komotar, R.J., Bregy, A., Shah, A.H., Wahlestedt, C. and Ayad, N.G. (2013) Epigenetic Pathways and Glioblastoma Treatment. Epigenetics, 8, 785-795. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Rossi, M., Magnoni, L., Miracco, C., Mori, E., Tosi, P., Pirtoli, L., Tini, P., Oliveri, G., Cosci, E. and Bakker, A. (2011) β-Catenin and Gli1 Are Prognostic Markers in Glioblastoma. Cancer Biology & Therapy, 11, 753-761. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Furukawa, K., Kumon, Y., Harada, H., Kohno, S., Nagato, S., Teraoka, M., Fujiwara, S., Nakagawa, K., Hamada, K. and Ohnishi, T. (2006) PTEN Gene Transfer Suppresses the Invasive Potential of Human Malignantgliomas by Regulating Cell Invasion-Related Molecules. International Journal of Oncology, 29, 73-81.
|
|
[9]
|
Schmelzle, T. and Hall, M.N. (2000) TOR, a Central Controller of Cell Growth. Cell, 103, 253-262. [Google Scholar] [CrossRef]
|
|
[10]
|
Neshat, M.S., Mellinghoff, I.K., Tran, C., Stiles, B., Thomas, G., Petersen, R., Frost, P., Gibbons, J.J., Wu, H. and Sawyers, C.L. (2001) Enhanced Sensitivity of PTEN-Deficient Tumors to Inhibition of FRAP/mTOR. Proceedings of the National Academy of Sciences of the United States of America, 98, 10314-10319. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Geoerger, B., Kerr, K., Tang, C.B., Fung, K.M., Powell, B., Sutton, L.N., Phillips, P.C. and Janss, A.J. (2001) Antitumor Activity of the Rapamycin Analog CCI-779 in Human Primitive Neuroectodermal Tumor/Medulloblastoma Models as Single Agent and in Combination Chemotherapy. Cancer Research, 61, 1527-1532.
|
|
[12]
|
Chen, Q., Weng, H.-Y., Tang, X.-P., Lin, Y., Yuan, Y., Li, Q., Tang, Z., Wu, H.-B., Yang, S., Li, Y., Zhao, X.-L., Fu, W.-J., Niu, Q., Feng, H., Zhang, X., Wang, Y., Bian, X.-W. and Yao, X.-H. (2019) ARL4C Stabilized by AKT/mTOR Pathway Promotes the Invasion of PTEN-Deficient Primary Human Glioblastoma. The Journal of Pathology, 247, 266-278. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhang, W.-B., Wang, Z., Shu, F., Jin, Y.-H., Liu, H.-Y., Wang, Q.-J. and Yong, Y. (2010) Activation of AMP-Activated Protein Kinase by Temozolomide Contributes to Apoptosis in Glioblastoma Cells via p53 Activation and mTORC1 Inhibition. Journal of Biological Chemistry, 285, 404061-40471. [Google Scholar] [CrossRef]
|
|
[14]
|
Bi, Y., Li, H., Yi, D., Sun, Y., Bai, Y., Zhong, S., Song, Y., Zhao, G. and Chen, Y. (2018) Cordycepin Augments the Chemosensitivity of Human Glioma Cells to Temozolomide by Activating AMPK and Inhibiting the AKT Signaling Pathway. Molecular pharmaceutics, 15, 4912-4925. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Lan, L., Wang, W., Huang, Y., Bu, X. and Zhao, C. (2019) Roles of Wnt7a in Embryo Development, Tissue Homeostasis, And Human Diseases. Journal of Cellular Biochemistry, 120, 18588-18598. [Google Scholar] [CrossRef]
|
|
[16]
|
Choi, H.-J., Gross, J.C., Pokutta, S. and Weis, W.I. (2009) Interactions of Plakoglobin and Beta-Catenin with Desmosomal Cadherins: Basis of Selective Exclusion of Alpha- and Beta-Catenin from Desmosomes. The Journal of Biological Chemistry, 284, 31776-31778. [Google Scholar] [CrossRef]
|
|
[17]
|
Coyle-Rink, J., Del Valle, L., Sweet, T., Khalili, K. and Amini, S. (2002) Developmental Expression of Wnt Signaling Factors in Mouse Brain. Cancer Biology & Therapy, 1, 640-645. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Shao, Y., Zheng, Q., Wang, W., Xin, N., Song, X. and Zhao, C. (2016) Biological Functions of Macrophage-Derived Wnt5a, and Its Roles in Human Diseases. Oncotarget, 7, 67674-67684. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Wang, L., Wang, X. and Jiang, X. (2019) miR-127 Suppresses Gastric Cancer Cell Migration and Invasion via Targeting Wnt7a. Oncology Letters, 17, 3219-3226. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Xu, A., Yang, H., Gao, K., Zhan, Z., Song, Z., Huang, T. and Song, Y. (2020) Expression Profiles and Prognostic Significance of WNT Family Members in Glioma via Bioinformatic Analysis. Bioscience Reports, 40, Article ID: BSR20194255. [Google Scholar] [CrossRef]
|
|
[21]
|
Roth, W., Wild-Bode, C., Platten, M., Grimmel, C., Melkonyan, H.S., Dichgans, J. and Weller, M. (2000) Secreted Frizzled-Related Proteins Inhibit Motility and Promote Growth of Human Malignant Glioma Cells. Oncogene, 19, 4210-4220. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Schiefer, L., Visweswaran, M., Perumal, V., Arfuso, F., Groth, D., Newsholme, P., Warrier, S. and Dharmarajan, A. (2014) Epigenetic Regulation of the Secreted Frizzled-Related Protein Family in Human Glioblastoma Multiforme. Cancer Gene Therapy, 21, 297-303. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Götze, S., Wolter, M., Reifenberger, G., Müller, O. and Sievers, S. (2010) Frequent Promoter Hypermethylation of Wnt Pathway Inhibitor Genes in Malignant Astrocytic Gliomas. International Journal of Cancer, 126, 2584-2593. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Ramachandran, I., Ganapathy, V., Gillies, E., Fonseca, I., Sureban, S.M., Houchen, C.W., Reis, A. and Queimado, L. (2014) Wnt Inhibitory Factor 1 Suppresses Cancer Stemness and Induces Cellular Senescence. Cell Death & Disease, 5, e1246. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Zheng, H., Ying, H., Wiedemeyer, R., Yan, H., Quayle, S.N., Ivanova, E., V., Paik, J.-H., Zhang, H., Xiao, Y., Perry, S.R., Hu, J., Vinjamoori, A., Gan, B., Sahin, E., Chheda, M.G., Brennan, C., Y. Wang, A., Hahn, W.C., Chin, L. and DePinho, R.A. (2010) PLAGL2 Regulates Wnt Signaling to Impede Differentiation in Neural Stem Cells and Gliomas. Cancer Cell, 17, 497-509. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Rheinbay, E., Suvà, M.L., Gillespie, S.M., Wakimoto, H., Patel, A.P., Shahid, M., Oksuz, O., Rabkin, S.D., Martuza, R.L., Rivera, M.N., Louis, D.N., Kasif, S., Chi, A.S. and Bernstein, B.E. (2013) An Aberrant Transcription Factor Network Essential for Wnt Signaling and Stem Cell Maintenance in Glioblastoma. Cell Reports, 3, 1567-1579. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zhang, N., Wei, P., Gong, A., Chiu, W.-T., Lee, H.-T., Colman, H., Huang, H., Xue, J., Liu, M., Wang, Y., Sawaya, R., Xie, K., Alfred Yung, W.K., Medema, R.H., He, X. and Huang, S. (2011) FoxM1 Promotes β-Catenin Nuclear Localization and Controls Wnt Target-Gene Expression and Glioma Tumorigenesis. Cancer Cell, 20, 427-442. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Joshi, K., Banasavadi-Siddegowda, Y., Mo, X., Kim, S.-H., Mao, P., Kig, C., Nardini, D., Sobol Robert, W., Chow Lionel, M.L., Kornblum, H.I, Waclaw, R., Beullens, M. and Nakano, I. (2013) MELK-Dependent FOXM1 Phosphorylation Is Essential for Proliferation of Glioma Stem Cells. Stem Cells, 31, 1051-1063. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Kerstin, B., Nadège, P., Dierk, I. and Michael, B. (2006) Secretion of Wnt Ligands Requires Evi, a Conserved Transmembrane Protein. Cell, 125, 523-533. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Augustin, I., Goidts, V., Bongers, A., Kerr, G., Vollert, G., Radlwimmer, B., Hartmann, C., Herold‐Mende, C., Reifenberger, G., von Deimling, A. and Boutros, M. (2012) The Wnt Secretion Protein Evi/Gpr177 Promotes Glioma Tumourigenesis. Cancer Research, 72, 3240. [Google Scholar] [CrossRef]
|
|
[31]
|
Ji, H., Wang, J., Nika, H., Hawke, D., Keezer, S., Ge, Q., Fang, B., Fang, X., Fang, D., Litchfield, D.W., Aldape, K. and Lu, Z. (2009) EGF-Induced ERK Activation Promotes CK2-Mediated Disassociation of Alpha-Catenin from Beta-Catenin and Transactivation of Beta-Catenin. Molecular Cell, 36, 547-559. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Huang, P.H., Xu, A.M. and White, F.M. (2009) Oncogenic EGFR Signaling Networks in Glioma. Science Signaling, 2, re6. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Qian, X., Bradley, R., Liang, K., Koeman, J., Ascierto, M.L., Worschech, A., De Giorgi, V., Wang, E., Kefene, L., Su, Y., Essenburg, C., Kaufman, D.W., DeKoning, T., Enter, M.A., O’Rourke, T.J., Marincola, F.M. and Vande Woude, G.F. (2012) Hepatocyte Growth Factor (HGF) Autocrine Activation Predicts Sensitivity to MET Inhibition in Glioblastoma. Proceedings of the National Academy of Sciences of the United States of America, 109, 570-575. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Stine Asferg, P., Rikke Hedegaard, D., Simon Kjær, H., Munthe Sune, K.A., Michael Tveden, G., Helle, W., Tine, R., Christoph Patrick, B., Steinbjørn, H. and Bjarne Winther, K. (2015) High Levels of c-Met Is Associated with Poor Prognosis in Glioblastoma. Journal of Neuro-Oncology, 122, 517-527. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Liu, W., Fu, Y., Xu, S., Ding, F., Zhao, G., Zhang, K., Du, C., Pang, B. and Pang, Q. (2011) c-Met Expression Is Associated with Time to Recurrence in Patients with Glioblastoma Multiforme. Journal of Clinical Neuroscience, 18, 119-121. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Olmez, O.F., Cubukcu, E., Evrensel, T., Kurt, M., Avci, N., Tolunay, S., Bekar, A., Deligonul, A., Hartavi, M., Alkis, N. and Manavoglu, O. (2014) The Immunohistochemical Expression of c-Met Is an Independent Predictor of Survival in Patients with Glioblastoma Multiforme. Clinical and Translational Oncology, 16, 173-177. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Louis, D.N. (2006) Molecular Pathology of Malignant Gliomas. Annual Review of Pathology, 1, 97-117. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Kim, K.H., Seol, H.J., Kim, E.H., Rheey, J., Jin, H.J., Lee, Y., Joo, K.M., Lee, J. and Nam, D.-H. (2013) Wnt/β-Catenin Signaling Is a Key Downstream Mediator of MET Signaling in Glioblastoma Stem Cells. Neuro-Oncology, 15, 161-171. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Pasca di Magliano, M. and Hebrok, M. (2003) Hedgehog Signalling in Cancer Formation and Maintenance. Nature Reviews Cancer, 3, 903-911. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Northcott, P.A., Korshunov, A., Witt, H., Hielscher, T., Eberhart, C.G., Mack, S., Bouffet, E., Clifford, S.C., Hawkins, C.E., French, P., Rutka, J.T., Pfister, S. and Taylor, M.D. (2011) Medulloblastoma Comprises Four Distinct Molecular variants. Journal of Clinical Oncology, 29, 1408-1414. [Google Scholar] [CrossRef]
|
|
[41]
|
Zinke, J., Schneider, F.T., Harter, P.N., Thom, S., Ziegler, N., Toftgård, R., Plate, K.H. and Liebner, S. (2015) β-Catenin-Gli1 Interaction Regulates Proliferation and Tumor Growth in Medulloblastoma. Molecular Cancer, 14, Article No. 17. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Chandra, V., Das, T., Gulati, P., Biswas, N.K., Rote, S., Chatterjee, U., Ghosh, S.N., Deb, S., Saha, S.K., Chowdhury, A.K., Ghosh, S., Rudin, C.M., Mukherjee, A., Basu, A. and Dhara, S. (2015) Hedgehog Signaling Pathway Is Active in GBM with GLI1 mRNA Expression Showing a Single Continuous Distribution Rather than Discrete High/Low Clusters. PLoS ONE, 10, e0116390. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Jin, X., Jeon, H.-Y., Joo, K.M., Kim, J.-K., Jin, J., Kim, S.H., Kang, B.G., Beck, S., Lee, S.J., Kim, J.K., Park, A.-K., Park, W.-Y., Choi, Y.-J., Nam, D.-H. and Kim, H. (2011) Frizzled 4 Regulates Stemness and Invasiveness of Migrating Glioma Cells Established by Serial Intracranial Transplantation. Cancer Research, 71, 3066-3075. [Google Scholar] [CrossRef]
|
|
[44]
|
Kamino, M., Kishida, M., Kibe, T., Ikoma, K., Iijima, M., Hirano, H., Tokudome, M., Chen, L., Koriyama, C., Yamada, K., Arita, K. and Kishida, S. (2011) Wnt‐5a Signaling Is Correlated with Infiltrative Activity in Human Glioma by Inducing Cellular Migration and MMP‐2. Cancer Science, 102, 540-548. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Pu, P., Zhang, Z., Kang, C., Jiang, R., Jia, Z., Wang, G. and Jiang, H. (2009) Downregulation of Wnt2 and β-Catenin by siRNA Suppresses Malignant Glioma Cell Growth. Cancer Gene Therapy, 16, 351-361. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Gurpinar, E., Grizzle, W.E. and Piazza, G.A. (2014) NSAIDs inhibit tumorigenesis, but how? Clinical cancer research, 20, 1104-1113. [Google Scholar] [CrossRef]
|
|
[47]
|
Lan, F., Xiao, Y., Han, L., Shi, Z., Yang, Y., Pu, P., Yao, Z. and Kang, C. (2012) Genome-Wide Identification of TCF7L2/TCF4 Target miRNAs Reveals a Rolefor miR-21 in Wnt-Driven Epithelial Cancer. International Journal of Oncology, 40, 519-526. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Sareddy, G.R., Kesanakurti, D., Kirti, P.B. and Babu, P.P. (2013) Nonsteroidal Anti-Inflammatory Drugs Diclofenac and Celecoxib Attenuates Wnt/β-Catenin/Tcf Signaling Pathway in Human Glioblastoma Cells. Neurochemical Research, 38, 2313-2322. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Kim, Y., Kim, K.H., Lee, J., Lee, Y.-A., Kim, M., Lee, S.J., Park, K., Yang, H., Jin, J., Joo, K.M., Lee, J. and Nam, D.-H. (2012) Wnt Activation Is Implicated in Glioblastoma Radioresistance. Cancer Research, 72, 3458. [Google Scholar] [CrossRef]
|
|
[50]
|
Fujii, N., You, L., Xu, Z., Uematsu, K., Shan, J., He, B., Mikami, I., Edmondson, L.R., Neale, G., Zheng, J., Kiplin, G.R. and Jablons, D.M. (2007) An Antagonist of Dishevelled Protein-Protein Interaction Suppresses Beta-Catenin-Dependent Tumor Cell Growth. Cancer Research, 67, 573-579. [Google Scholar] [CrossRef]
|
|
[51]
|
He, B., You, L., Uematsu, K., Xu, Z., Lee, A.Y., Matsangou, M., McCormick, F. and Jablons, D.M. (2004) A Monoclonal Antibody against Wnt-1 Induces Apoptosis in Human Cancer Cells. Neoplasia, 6, 7-14. [Google Scholar] [CrossRef]
|
|
[52]
|
You, L., He, B., Xu, Z., Uematsu, K., Mazieres, J., Fujii, N., Mikami, I., Reguart, N., McIntosh, J.K., Kashani-Sabet, M., McCormick, F. and Jablons, D.M. (2004) An Anti-Wnt-2 Monoclonal Antibody Induces Apoptosis in Malignant Melanoma Cells and Inhibits Tumor Growth. Cancer Research, 64, 5385-5389. [Google Scholar] [CrossRef]
|
|
[53]
|
Säfholm, A., Tuomela, J., Rosenkvist, J., Dejmek, J., Härkönen, P. and Andersson, T. (2008) The Wnt-5a-Derived Hexapeptide Foxy-5 Inhibits Breast Cancer Metastasis in Vivo by Targeting Cell Motility. Clinical Cancer Research, 14, 6556-6563. [Google Scholar] [CrossRef]
|
|
[54]
|
Chen, B., Dodge, M.E., Tang, W., Lu, J., Ma, Z., Fan, C.-W., Wei, S., Hao, W., Kilgore, J., Williams, N.S., Roth, M.G., Amatruda, J.F., Chen, C. and Lum, L. (2009) Small Molecule-Mediated Disruption of Wnt-Dependent Signaling in Tissue Regeneration and Cancer. Nature Chemical Biology, 5, 100-107. [Google Scholar] [CrossRef] [PubMed]
|