|
[1]
|
Rajaram, A., Chen, X.-B. and Schreyer, D.J. (2012) Strategic Design and Recent Fabrication Techniques for Bioengi-neered Tissue Scaffolds to Improve Peripheral Nerve Regeneration. Tissue Engineering Part B—Reviews, 18, 454-467. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Faroni, A., Mobasseri, S.A., Kingham, P.J. and Reid, A.J. (2015) Peripheral Nerve Regeneration: Experimental Strategies and Future Perspectives. Advanced Drug Delivery Reviews, 82-83, 160-167. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Tabakow, P., Jarmundowicz, W., Czapiga, B., Fortuna, W., Miedzybrodzki, R., Czyz, M., Huber, J., Szarek, D., Okurowski, S., Szewczyk, P., Gorski, A. and Raisman, G. (2013) Transplantation of Autologous Olfactory Ensheathing Cells in Complete Human Spinal Cord Injury. Cell Transplanta-tion, 22, 1591-1612. [Google Scholar] [CrossRef]
|
|
[4]
|
Mano, J.F., Sousa, R.A., Boesel, L.F., Neves, N.M. and Reis, R.L. (2004) Bloinert, Biodegradable and Injectable Polymeric Matrix Composites for Hard Tissue Replacement: State of the Art and Recent Developments. Composites Science and Technology, 64, 789-817. [Google Scholar] [CrossRef]
|
|
[5]
|
Scotti, C., Tonnarelli, B., Papadimitropoulos, A., Scherber-ich, A., Schaeren, S., Schauerte, A., Lopez-Rios, J., Zeller, R., Barbero, A. and Martin, I. (2010) Recapitulation of En-dochondral Bone Formation Using Human Adult Mesenchymal Stem Cells as a Paradigm for Developmental Engineer-ing. Proceedings of the National Academy of Sciences of the United States of America, 107, 7251-7256. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Moskow, J., Ferrigno, B., Mistry, N., Jaiswal, D., Bulsara, K., Ru-draiah, S. and Kumbar, S.G. (2019) Review: Bioengineering Approach for the Repair and Regeneration of Peripheral Nerve. Bioactive Materials, 4, 107-113. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Teixeira, A.I., Abrams, G.A., Bertics, P.J., Murphy, C.J. and Nealey, P.F. (2003) Epithelial Contact Guidance on Well-Defined Micro- and Nanostructured Substrates. Journal of Cell Science, 116, 1881-1892. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Cai, J., Peng, X.J., Nelson, K.D., Eberhart, R. and Smith, G.M. (2005) Permeable Guidance Channels Containing Microfilament Scaffolds Enhance Axon Growth and Maturation. Journal of Biomedical Materials Research Part A, 75, 374-386. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Liu, Q., Huang, J., Shao, H., Song, L. and Zhang, Y. (2016) Dual-Factor Loaded Functional Silk Fibroin Scaffolds for Peripheral Nerve Regeneration with the Aid of Neovascularization. RSC Advances, 6, 7683-7691. [Google Scholar] [CrossRef]
|
|
[10]
|
Tsimbouri, P., Gadegaard, N., Burgess, K., White, K., Reynolds, P., Herzyk, P., Oreffo, R. and Dalby, M.J. (2014) Nanotopographical Effects on Mesenchymal Stem Cell Morphology and Phenotype. Journal of Cellular Biochemistry, 115, 380-390. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Spivey, E.C., Khaing, Z.Z., Shear, J.B. and Schmidt, C.E. (2012) The Fundamental Role of Subcellular Topography in Peripheral Nerve Repair Therapies. Biomaterials, 33, 4264-4276. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Sun, M., McGowan, M., Kingham, P.J., Terenghi, G. and Downes, S. (2010) Novel Thin-Walled Nerve Conduit with Micro-grooved Surface Patterns for Enhanced Peripheral Nerve Repair. Journal of Materials Science-Materials in Medicine, 21, 2765-2774. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Mobasseri, A., Faroni, A., Minogue, B.M., Downes, S., Terenghi, G. and Reid, A.J. (2015) Polymer Scaffolds with Preferential Parallel Grooves Enhance Nerve Regenera-tion. Tissue Engineering Part A, 21, 1152-1162. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Wang, C.-Y., Zhang, K.-H., Fan, C.-Y., Mo, X.-M., Ruan, H.-J. and Li, F.-F. (2011) Aligned Natural-Synthetic Polyblend Nanofibers for Peripheral Nerve Regeneration. Acta Bio-materialia, 7, 634-643. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zhang, K., Jinglei, W., Huang, C. and Mo, X. (2013) Fabrication of Silk Fibroin/P(LLA-CL) Aligned Nanofibrous Scaffolds for Nerve Tissue Engineering. Macromolecular Materials and Engineering, 298, 565-574. [Google Scholar] [CrossRef]
|
|
[16]
|
Mahairaki, V., Lim, S.H., Christopherson, G.T., Xu, L., Nasonkin, I., Yu, C., Mao, H.-Q. and Koliatsos, V.E. (2011) Nanofiber Matrices Promote the Neuronal Differentiation of Human Embryonic Stem Cell-Derived Neural Precursors in Vitro. Tissue Engineering Part A, 17, 855-863. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zheng, J., Kontoveros, D., Lin, F., Hua, G., Reneker, D.H., Becker, M.L. and Willits, R.K. (2015) Enhanced Schwann Cell Attachment and Alignment Using One-Pot “Dual Click” GRGDS and YIGSR Derivatized Nanofibers. Biomacromolecules, 16, 357-363. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Xie, J., MacEwan, M.R., Li, X., Sakiyama-Elbert, S.E. and Xia, Y. (2009) Neurite Outgrowth on Nanofiber Scaffolds with Different Orders, Structures, and Surface Properties. Acs Nano, 3, 1151-1159. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Christopherson, G.T., Song, H. and Mao, H.-Q. (2009) The Influence of Fiber Diameter of Electrospun Substrates on Neural Stem Cell Differentiation and Proliferation. Biomaterials, 30, 556-564. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Newman, K.D., McLaughlin, C.R., Carlsson, D., Li, F., Liu, Y. and Griffith, M. (2006) Bioactive Hydrogel-Filament Scaffolds for Nerve Repair and Regeneration. International Journal of Artificial Organs, 29, 1082-1091. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Wang, X.D., Hu, W., Cao, Y., Yao, J., Wu, J. and Gu, X.S. (2005) Dog Sciatic Nerve Regeneration across a 30-mm Defect Bridged by a Chitosan/PGA Artificial Nerve Graft. Brain, 128, 1897-1910. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Yao, L., de Ruiter, G.C.W., Wang, H., Knight, A.M., Spinner, R.J., Yaszemski, M.J., Windebank, A.J. and Pandit, A. (2010) Controlling Dispersion of Axonal Regeneration Using a Mul-tichannel Collagen Nerve Conduit. Biomaterials, 31, 5789-5797. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Lundborg, G. and Kanje, M. (1996) Bioartificial Nerve Grafts. A Prototype. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, 30, 105-110. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Lundborg, G., Dahlin, L., Dohi, D., Kanje, M. and Terada, N. (1997) A New Type of “Bioartificial” Nerve Graft for Bridging Extended Defects in Nerves. Journal of Hand Surgery (Edinburgh, Scotland), 22, 299-303. [Google Scholar] [CrossRef]
|
|
[25]
|
Hsu, S.-H., Lu, P.S., Ni, H.-C. and Su, C.-H. (2007) Fabri-cation and Evaluation of Microgrooved Polymers as Peripheral Nerve Conduits. Biomedical Microdevices, 9, 665-674. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
McWhorter, F.Y., Davis, C.T. and Liu, W.F. (2015) Physical and Mechanical Regulation of Macrophage Phenotype and Function. Cellular and Molecular Life Sciences, 72, 1303-1316. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Reeves, A.R.D., Spiller, K.L., Freytes, D.O., Vunjak-Novakovic, G. and Kaplan, D.L. (2015) Controlled Release of Cytokines Using Silk-Biomaterials for Macrophage Polarization. Bio-materials, 73, 272-283. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Naskar, D., Nayak, S., Dey, T. and Kundu, S.C. (2014) Non-Mulberry Silk Fibroin Influence Osteogenesis and Osteoblast-Macrophage Cross Talk on Titanium Based Surface. Scientific Reports, 4, Article No. 4745. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Cui, X., Wen, J., Zhao, X., Chen, X., Shao, Z. and Jiang, J.J. (2013) A Pi-lot Study of Macrophage Responses to Silk Fibroin Particles. Journal of Biomedical Materials Research Part A, 101, 1511-1517. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Galeotti, F. andicsova, A., Yunus, S. and Botta, C. (2012) Precise Surface Patterning of Silk Fibroin Films by Breath Figures. Soft Matter, 8, 4815-4821. [Google Scholar] [CrossRef]
|
|
[31]
|
Mitropoulos, A.N., Marelli, B., Ghezzi, C.E., Applegate, M.B., Partlow, B.P., Kaplan, D.L. and Omenetto, F.G. (2015) Transparent, Nanostructured Silk Fibroin Hydrogels with Tunable Me-chanical Properties. Acs Biomaterials Science & Engineering, 1, 964-970. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Wieringa, P., Tonazzini, I., Micera, S. and Cecchini, M. (2012) Nanotopography Induced Contact Guidance of the F11 Cell Line during Neuronal Differentiation: A Neuronal Model Cell Line for Tissue Scaffold Development. Nanotechnology, 23, Article ID: 275102. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Beduer, A., Vieu, C., Arnauduc, F., Sol, J.-C., Loubinoux, I. and Vaysse, L. (2012) Engineering of Adult Human Neural Stem Cells Differentiation through Surface Micropatterning. Biomaterials, 33, 504-514. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Wieringa, P.A., de Pinho, A.R.G., Micera, S., van Wezel, R.J.A. and Moroni, L. (2018) Biomimetic Architectures for Peripheral Nerve Repair: A Review of Biofabrication Strate-gies. Advanced Healthcare Materials, 7, Article ID: 1701164. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Li, X., Li, M., Sun, J., Zhuang, Y., Shi, J., Guan, D., Chen, Y. and Dai, J. (2016) Radially Aligned Electrospun Fibers with Continuous Gradient of SDF1 alpha for the Guidance of Neural Stem Cells. Small, 12, 5009-5018. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Park, S.Y., Ki, C.S., Park, Y.H., Lee, K.G., Kang, S.W., Kweon, H.Y. and Kim, H.J. (2015) Functional Recovery Guided by an Electrospun Silk Fibroin Conduit after Sciatic Nerve Injury in Rats. Journal of Tissue Engineering and Regenerative Medicine, 9, 66-76. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Wang, Y., Kong, Y., Zhao, Y., Feng, Q., Wu, Y., Tang, X., Gu, X. and Yang, Y. (2016) Electrospun, Reinforcing Network-Containing, Silk Fibroin-Based Nerve Guidance Conduits for Pe-ripheral Nerve Repair. Journal of Biomaterials and Tissue Engineering, 6, 53-60. [Google Scholar] [CrossRef]
|
|
[38]
|
Jeffries, E.M. and Wang, Y. (2012) Biomimetic Micropatterned Mul-ti-Channel Nerve Guides by Templated Electrospinning. Biotechnology and Bioengineering, 109, 1571-1582. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Yanagisawa, S., Zhu, Z., Kobayashi, I., Uchino, K., Tamada, Y., Tamura, T. and Asakura, T. (2007) Improving Cell-Adhesive Properties of Recombinant Bombyx mori Silk by Incorporation of Col-lagen or Fibronectin Derived Peptides Produced by Transgenic Silkworms. Biomacromolecules, 8, 3487-3492. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Widhe, M., Johansson, U., Hillerdahl, C.-O. and Hedhammar, M. (2013) Recombinant Spider Silk with Cell Binding Motifs for Specific Adherence of Cells. Biomaterials, 34, 8223-8234. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Schuh, C.M.A.P., Monforte, X., Hackethal, J., Redl, H. and Teuschl, A.H. (2016) Covalent Binding of Placental Derived Proteins to Silk Fibroin Improves Schwann Cell Adhe-sion and Proliferation. Journal of Materials Science—Materials in Medicine, 27, 188. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Musson, D.S., Naot, D., Chhana, A., Matthews, B.G., McIntosh, J.D., Lin, S.T.C., Choi, A.J., Callon, K.E., Dunbar, P.R., Lesage, S., Coleman, B. and Cornish, J. (2015) In Vitro Evalu-ation of a Novel Non-Mulberry Silk Scaffold for Use in Tendon Regeneration. Tissue Engineering Part A, 21, 1539-1551. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Yu, W.-M., Yu, H., Chen, Z.-L. and Strickland, S. (2009) Disruption of Laminin in the Peripheral Nervous System Impedes Nonmyelinating Schwann Cell Development and Impairs Nociceptive Sensory Function. Glia, 57, 850-859. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Plantman, S., Patarroyo, M., Fried, K., Domogatskaya, A., Tryggvason, K., Hammarberg, H. and Cullheim, S. (2008) Integrin-Laminin Interactions Controlling Neurite Outgrowth from Adult DRG Neurons in Vitro. Molecular and Cellular Neuroscience, 39, 50-62. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Deister, C., Aljabari, S. and Schmidt, C.E. (2007) Effects of Colla-gen 1, Fibronectin, Laminin and Hyaluronic Acid Concentration in Multi-Component Gels on Neurite Extension. Journal of Biomaterials Science—Polymer Edition, 18, 983-997. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Gardiner, N.J. (2011) Integrins and the Extracellular Matrix: Key Mediators of Development and Regeneration of the Sensory Nervous System. Developmental Neurobiology, 71, 1054-1072. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Romano, N.H., Madl, C.M. and Heilshorn, S.C. (2015) Ma-trix RGD Ligand Density and L1CAM-Mediated Schwann Cell Interactions Synergistically Enhance Neurite Outgrowth. Acta Biomaterialia, 11, 48-57. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Widhe, M., Shalaly, N.D. and Hedhammar, M. (2016) A Fibron-ectin Mimetic Motif Improves Integrin Mediated Cell Biding to Recombinant Spider Silk Matrices. Biomaterials, 74, 256-266. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Yang, Y.J., Kwon, Y., Choi, B.-H., Jung, D., Seo, J.H., Lee, K.H. and Cha, H.J. (2014) Multifunctional Adhesive Silk Fibroin with Blending of RGD-Bioconjugated Mussel Adhesive Protein. Biomacromolecules, 15, 1390-1398. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Zhang, N., He, L. and Wu, W. (2016) Self-Assembling Peptide Nano-fibrous Hydrogel as a Promising Strategy in Nerve Repair after Traumatic Injury in the Nervous System. Neural Regen-eration Research, 11, 717-718. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Xiao, W., Hu, X.Y., Zeng, W., Huang, J.H., Zhang, Y.G. and Luo, Z.J. (2013) Rapid Sciatic Nerve Regeneration of Rats by a Surface Modified Collagen-Chitosan Scaffold. Inju-ry—International Journal of the Care of the Injured, 44, 941-946. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Zhu, L., Wang, K., Ma, T., Huang, L., Xia, B., Zhu, S., Yang, Y., Liu, Z., Quan, X., Luo, K., Kong, D., Huang, J. and Luo, Z. (2017) Noncovalent Bonding of RGD and YIGSR to an Electrospun Poly(epsilon-Caprolactone) Conduit through Peptide Self-Assembly to Synergistically Promote Sciatic Nerve Regeneration in Rats. Advanced Healthcare Materials, 6, Article ID: 1600860. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Chen, S., Zhao, Y., Yan, X., Zhang, L., Li, G. and Yang, Y. (2019) PAM/GO/gel/SA Composite Hydrogel Conduit with Bioactivity for Repairing Peripheral Nerve Injury. Journal of Bio-medical Materials Research Part A, 107, 1273-1283. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Gordon, T. (2009) The Role of Neurotrophic Factors in Nerve Regeneration. Neurosurgical Focus, 26, E3. [Google Scholar] [CrossRef]
|
|
[55]
|
Rich, K.M., Alexander, T.D., Pryor, J.C. and Hollowell, J.P. (1989) Nerve Growth Factor Enhances Regeneration through Silicone Chambers. Experimental Neurology, 105, 162-170. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Yang, Y., Zhao, W., He, J., Zhao, Y., Ding, F. and Gu, X. (2011) Nerve Conduits Based on Immobilization of Nerve Growth Factor onto Modified Chitosan by Using Genipin as a Crosslinking Agent. European Journal of Pharmaceutics and Biopharmaceutics, 79, 519-525. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Fine, E.G., Decosterd, I., Papaloizos, M., Zurn, A.D. and Aebischer, P. (2002) GDNF and NGF Released by Synthetic Guidance Channels Support Sciatic Nerve Regeneration across a Long Gap. The European Journal of Neuroscience, 15, 589-601. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Zhang, H., Wang, K., Xing, Y. and Yu, Q. (2015) Ly-sine-Doped Polypyrrole/Spider Silk Protein/Poly(L-lactic) Acid Containing Nerve Growth Factor Composite Fibers for Neural Application. Materials Science & Engineering C—Materials for Biological Applications, 56, 564-573. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Catrina, S., Gander, B. and Madduri, S. (2013) Nerve Conduit Scaffolds for Discrete Delivery of Two Neurotrophic Factors. European Journal of Pharmaceutics and Biopharmaceu-tics, 85, 139-142. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Kapur, T.A. and Shoichet, M.S. (2004) Immobilized Concentration Gradients of Nerve Growth Factor Guide Neurite Outgrowth. Journal of Biomedical Materials Research Part A, 68, 235-243. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Johnson, B.N., Lancaster, K.Z., Zhen, G., He, J., Gupta, M.K., Kong, Y.L., Engel, E.A., Krick, K.D., Ju, A., Meng, F., Enquist, L.W., Jia, X. and McAlpine, M.C. (2015) 3D Printed Anatomical Nerve Regeneration Pathways. Advanced Functional Materials, 25, 6205-6217. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Moore, K., Macsween, M. and Shoichet, M. (2006) Immobilized Concentration Gradients of Neurotrophic Factors Guide Neurite Outgrowth of Primary Neurons in Macroporous Scaf-folds. Tissue Engineering, 12, 267-278. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Roy, J., Kennedy, T.E. and Costantino, S. (2013) Engineered Cell Culture Substrates for Axon Guidance Studies: Moving beyond Proof of Concept. Lab on a Chip, 13, 498-508. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Wheeler, B.C., Corey, J.M., Brewer, G.J. and Branch, D.W. (1999) Mi-crocontact Printing for Precise Control of Nerve Cell Growth in Culture. Journal of Biomechanical Engineering, 121, 73-78. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Adams, D.N., Kao, E.Y.C., Hypolite, C.L., Distefano, M.D., Hu, W.S. and Letourneau, P.C. (2005) Growth Cones Turn and Migrate up an Immobilized Gradient of the Laminin IKVAV Peptide. Journal of Neurobiology, 62, 134-147. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Tung, T.H. (2015) Clinical Strategies to Enhance Nerve Regeneration. Neural Regeneration Research, 10, 22-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Geremia, N.M., Gordon, T., Brushart, T.M., Al-Majed, A.A. and Verge, V.M.K. (2007) Electrical Stimulation Promotes Sensory Neuron Regeneration and Growth-Associated Gene Ex-pression. Experimental Neurology, 205, 347-359. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Kimura, K., Yanagida, Y., Haruyama, T., Kobatake, E. and Aizawa, M. (1998) Gene Expression in the Electrically Stimulated Differentiation of PC12 Cells. Journal of Biotechnol-ogy, 63, 55-65. [Google Scholar] [CrossRef]
|
|
[69]
|
Lu, M.-C., Ho, C.-Y., Hsu, S.-F., Lee, H.-C., Lin, J.-H., Yao, C.-H. and Chen, Y.-S. (2008) Effects of Electrical Stimulation at Different Frequencies on Regeneration of Tran-sected Peripheral Nerve. Neurorehabilitation and Neural Repair, 22, 367-373. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Lu, M.-C., Tsai, C.-C., Chen, S.-C., Tsai, F.-J., Yao, C.-H. and Chen, Y.-S. (2009) Use of Electrical Stimulation at Different Current Levels to Promote Recovery after Peripheral Nerve Injury in Rats. Journal of Trauma-Injury Infection and Critical Care, 67, 1066-1072. [Google Scholar] [CrossRef]
|
|
[71]
|
Yeh, C.-C., Lin, Y.-C., Tsai, F.-J., Huang, C.-Y., Yao, C.-H. and Chen, Y.-S. (2010) Timing of Applying Electrical Stimulation Is an Important Factor Deciding the Success Rate and Maturity of Regenerating Rat Sciatic Nerves. Neurorehabilitation and Neural Repair, 24, 730-735. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Li, L., Yu, M., Ma, P.X. and Guo, B. (2016) Electroactive De-gradable Copolymers Enhancing Osteogenic Differentiation from Bone Marrow Derived Mesenchymal Stem Cells. Journal of Materials Chemistry B, 4, 471-481. [Google Scholar] [CrossRef]
|
|
[73]
|
You, J.-O., Rafat, M., Ye, G.J.C. and Auguste, D.T. (2011) Nanoengi-neering the Heart: Conductive Scaffolds Enhance Connexin 43 Expression. Nano Letters, 11, 3643-3648. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Martins, A.M., Eng, G., Caridade, S.G., Mano, J.F., Reis, R.L. and Vun-jak-Novakovic, G. (2014) Electrically Conductive Chitosan/Carbon Scaffolds for Cardiac Tissue Engineering. Biom-acromolecules, 15, 635-643. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Kai, D., Prabhakaran, M.P., Jin, G. and Ramakrishna, S. (2011) Polypyr-role-Contained Electrospun Conductive Nanofibrous Membranes for Cardiac Tissue Engineering. Journal of Biomedical Materials Research Part A, 99, 376-385. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Mihardja, S.S., Sievers, R.E. and Lee, R.J. (2008) The Effect of Polypyr-role on Arteriogenesis in an Acute Rat Infarct Model. Biomaterials, 29, 4205-4210. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Das, S., Sharma, M., Saharia, D., Sarma, K.K., Sarma, M.G., Borthakur, B.B. and Bora, U. (2015) In Vivo Studies of Silk Based Gold Nano-Composite Conduits for Function-al Peripheral Nerve Regeneration. Biomaterials, 62, 66-75. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Altizer, A.M., Moriarty, L.J., Bell, S.M., Schreiner, C.M., Scott, W.J. and Borgens, R.B. (2001) Endogenous Electric Current Is Associated with Normal Development of the Ver-tebrate Limb. Developmental Dynamics: An Official Publication of the American Association of Anatomists, 221, 391-401. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Wu, Y., Wang, L., Guo, B., Shao, Y. and Ma, P.X. (2016) Electroactive Biodegradable Polyurethane Significantly Enhanced Schwann Cells Myelin Gene Expression and Neurotrophin Secretion for Peripheral Nerve Tissue Engineering. Biomaterials, 87, 18-31. [Google Scholar] [CrossRef] [PubMed]
|