|
[1]
|
Zhang, J., Wu, Y., Xing, M., Khan Leghari, S.A. and Sajjad, S. (2010) Development of Modified N Doped TiO2 Photo-catalyst with Metals, Nonmetals and Metal Oxides. Energy & Environmental Science, 3, 715-726. [Google Scholar] [CrossRef]
|
|
[2]
|
Fujishima, A. and Honda, K. (1972) Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238, 37-38. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Bueno, C., Pacio, M., Osorio, E., Perez, R. and Juarez, H. (2017) Effect of Annealing Atmosphere on Optic-Electric Properties of ZnO Thin Films. Revista Mexicana de Física, 63, 569-574.
|
|
[4]
|
Duan, L.B., Zhao, X.R., Liu, J.M., Geng, W.C., Sun, H.N. and Xie, H.Y. (2012) Effect of Annealing Atmosphere on Structural, Optical and Electrical Properties of Al-Doped Zn1−xCdxO Thin Films. Journal of Sol-Gel Science and Technology, 62, 344-350. [Google Scholar] [CrossRef]
|
|
[5]
|
Wang, Y., He, J., Li, X., Shi, Y., Zhang, Y. and Ding, X. (2021) Dendritic Mesoporous Silica & Titania Nanospheres (DMSTNs) Coupled with Amorphous Carbon Nitride (ACN) for Improved Visible-Light-Driven Hydrogen Production. Applied Surface Science, 538, Article ID: 148157. [Google Scholar] [CrossRef]
|
|
[6]
|
Fernandes, P., Costa, A.C.F.M., Kiminami, R.H.G.A. and Sa-saki, J.M. (2013) Synthesis of TiO2 by the Pechini Method and Photocatalytic Degradation of Methyl Red. Materials Research, 16, 468-472. [Google Scholar] [CrossRef]
|
|
[7]
|
Sarigul, G., Gómez, P.I., Linares, N., García-Martínez, J., Costa, R.D. and Serrano, E. (2020) The Use of N^N Ligands as an Alternative Strategy for The Sol-Gel Synthesis of Visible-Light Activated Titanias. Journal of Materials Chemistry C, 8, 12495-12508. [Google Scholar] [CrossRef]
|
|
[8]
|
Guaglianoni, W., Ruwer, T., Caldeira, L., Wermuth, T.B., Venturini, J. and Bergmann, C.P. (2020) Single-Step Synthesis of Fe-TiO2 Nanotube Arrays with Improved Light Harvesting Proper-ties for Application as Photoactive Electrodes. Materials Science and Engineering B, 263, Article ID: 114896. [Google Scholar] [CrossRef]
|
|
[9]
|
Huang, J., Shen, J., Li, S., Cai, J., Wang, S., Lu, Y., et al. (2020) TiO2 Nanotube Arrays Decorated with Au and Bi2S3 Nanoparticles for Efficient Fe3+ Ions Detection and Dye Photocata-lytic Degradation. Journal of Materials Science and Technology, 39, 28-38. [Google Scholar] [CrossRef]
|
|
[10]
|
Yoo, H. and Kim, J. (2021) Photoactive TiO2/CuxO Composite Films for Photocatalytic Degradation of Methylene Blue Pollutant Molecules. Advanced Powder Technology, 32, 1287-1293. [Google Scholar] [CrossRef]
|
|
[11]
|
Antony, R.P., Dasgupta, A., Mahana, S., Topwal, D., Mathews, T. and Dhara, S. (2015) Resonance Raman Spectroscopic Study for Radial Vibrational Modes in Ultra-Thin Walled TiO2 Nanotubes. Journal of Raman Spectroscopy, 46, 231-235. [Google Scholar] [CrossRef]
|
|
[12]
|
Liu, X., Pan, L., Sun, Z., Chen, Y.M., Yang, X., Yang, L., et al. (2011) Strain Engineering of the Elasticity and the Raman Shift of Nanostructured TiO2. Journal of Applied Physics, 110, Article ID: 044322. [Google Scholar] [CrossRef]
|
|
[13]
|
Cao, G. and Yi, N. (2020) Quantitative Analysis of Anatase-Rutile Mix-tures by Raman Spectroscopy. ChemistrySelect, 5, 11530-11533. [Google Scholar] [CrossRef]
|
|
[14]
|
Ohsaka, T., Izumi, F. and Fujiki, Y. (1978) Raman Spectrum of Ana-tase, TiO2. Journal of Raman Spectroscopy, 7, 321- 324. [Google Scholar] [CrossRef]
|
|
[15]
|
Zhang, J., Li, M., Feng, Z., Chen, J. and Li, C. (2006) UV Raman Spectroscopic Study on TiO2. I. Phase Transformation at the Surface and in the Bulk. The Journal of Physical Chemistry B, 110, 927-935. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Tan, X., Zhang, J., Tan, D., Shi, J., Cheng, X., Zhang, F., et al. (2019) Ionic Liquids Produce Heteroatom-Doped Pt/ TiO2 Nanocrystals for Efficient Photocatalytic Hydrogen Production. Nano Research, 12, 1967-1972. [Google Scholar] [CrossRef]
|
|
[17]
|
Sinhamahapatra, A., Jeon, J.P. and Yu, J.S. (2015) A New Ap-proach to Prepare Highly Active and Stable Black Titania for Visible Light-Assisted Hydrogen Production. Energy & Environmental Science, 8, 3539-3544. [Google Scholar] [CrossRef]
|
|
[18]
|
Xiao, H. and Wang, T. (2021) Graphene Oxide (rGO)-Metal Oxide (TiO/AgO) Based Nanocomposites for the Removal of Rhodamine B at UV-Visible Light. Journal of Physics and Chemistry of Solids, 154, Article ID: 110100. [Google Scholar] [CrossRef]
|
|
[19]
|
Güzelçimen, F., Tanören, B., Cetinkaya, C., et al. (2020) The Ef-fect of Thickness on Surface Structure of rf Sputtered TiO2 Thin Films by XPS, SEM/EDS, AFM and SAM. Vacuum, 182, Article ID: 109766. [Google Scholar] [CrossRef]
|
|
[20]
|
Lee, M.K. and Park, Y. (2019) Contact Angle Relaxation and Long-Lasting Hydrophilicity of Sputtered Anatase TiO2 Thin Films by Novel Quantitative XPS Analysis. Langmuir, 35, 2066-2077. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
El Fanaoui, A., Taleb, A., Hamri, E., Boulkaddat, L., Kirou, H., Atourk, L., et al. (2016) Effect of Heat Treatment on TiO2 Thin Films Properties. Journal of Materials and Environmen-tal Science, 7, 907-914.
|
|
[22]
|
Monika, S.M., Syrek, K., Pierzchała, J., Wiercigroch, E., Malek, K. and Sulka, G.D. (2020) Band Gap Engineering of Nanotubular Fe2O3-TiO2 Photoanodes by Wet Impregnation. Applied Surface Science, 517, Article ID: 146195. [Google Scholar] [CrossRef]
|
|
[23]
|
Nguyen, T.P., Nguyen, D., Nguyen, V.H., Le, T.-H., Vo, D.-V.N., Trinh, Q.T., et al. (2020) Recent Advances in TiO2- Based Photocatalysts for Reduction of CO2 to Fuels. Na-nomaterials, 10, Article No. 337. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Maimaiti, M., Zhao, B., Mamat, M., Tuersun, Y., Mijiti, A., Wang, Q., et al. (2019) The Structural, Optical and Photocatalytic Properties of the TiO2 Thin Films. Materials Research Express, 6, Article ID: 086408. [Google Scholar] [CrossRef]
|
|
[25]
|
Mezni, A., Ben Saber, N., Bukhari, A., Ibrahim, M.M., Al-Talhi, H., Ahmed Alshehri, N., et al. (2019) Plasmonic Hybrid Platinum-Titania Nanocomposites as Highly Active Photocata-lysts: Self-Cleaning of Cotton Fiber under Solar Light. Journal of Materials Research and Technology, 9, 1447-1456. [Google Scholar] [CrossRef]
|