|
[1]
|
Strebhardt, K. and Ullrich, A. (2008) Paul Ehrlich’s Magic Bullet Concept: 100 Years of Progress. Nature Reviews Cancer, 8, 473-480. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Ford, C.H., Newman, C.E., Johnson, J.R., et al. (1983) Localisation and Toxicity Study of a Vindesine-Anti-CEA Conjugate in Patients with Advanced Cancer. British Journal of Cancer, 47, 35-42. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Dimitrov, D.S. and Marks, J.D. (2009) Therapeutic Antibodies: Current State and Future Trends Is a Paradigm Change Coming Soon. Methods in Molecular Biology, 525, 1-27. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Trail, P.A., Willner, D., Lasch, S.J., et al. (1993) Cure of Xenografted Human Carcinomas by BR96-Doxorubicin Immunoconjugates. Science, 261, 212-215. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Damelin, M., Zhong, W., Myers, J., et al. (2015) Evolving Strategies for Target Selection for Antibody-Drug Conjugates. Pharmaceutical Research, 32, 3494-3507. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Damle, N.K. and Frost, P. (2003) Antibody-Targeted Chemotherapy with Immunoconjugates of Calicheamicin. Current Opinion in Pharmacology, 3, 386-390. [Google Scholar] [CrossRef]
|
|
[7]
|
Donaghy, H. (2016) Effects of Antibody, Drug and Linker on the Preclinical and Clinical Toxicities of Antibody-Drug Conjugates. MAbs, 8, 659-671. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Carter, P.J. (2006) Potent Antibody Therapeutics by Design. Nature Reviews Immunology, 6, 343-357. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Nasiri, H., Valedkarimi, Z. and Aghebati-Maleki, L. (2018) Antibody-Drug Conjugates: Promising and Efficient Tools for Targeted Cancer Therapy. Journal of Cellular Physiology, 233, 6441-6457. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Francisco, J.A., Cerveny, C.G., Meyer, D.L., et al. (2003) cAC10-vcMMAE, an Anti-CD30-Monomethyl Auristatin E Conjugate with Potent and Selective Antitumor Activity. Blood, 102, 1458-1465. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Alley, S.C., Benjamin, D.R., Jeffrey, S.C., et al. (2008) Contribution of Linker Stability to the Activities of Anticancer Immunoconjugates. Bioconjugate Chemistry, 19, 759-765. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Beck, A., Goetsch, L. and Dumontet, C. (2017) Strategies and Challenges for the Next Generation of Antibody-Drug Conjugates. Nature Reviews Drug Discovery, 16, 315-337. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Tsuchikama, K. and An, Z. (2018) Antibody-Drug Conjugates: Recent Advances in Conjugation and Linker Chemistries. Protein & Cell, 9, 33-46. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Ducry, L. and Stump, B. (2010) Antibody-Drug Conjugates: Linking Cytotoxic Payloads to Monoclonal Antibodies. Bioconjugate Chemistry, 21, 5-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
European Medicines Agency (2018) Mylotarg: Summary of Product Characteristics.
https://www.ema.europa.eu/en/medicines/human/EPAR/mylotarg-0
|
|
[16]
|
Bross, P.F., Beitz, J., Chen, G., et al. (2001) Approval Summary: Gemtuzumab Ozogamicin in Relapsed Acute Myeloid Leukemia. Clinical Cancer Research, 7, 1490-1496.
|
|
[17]
|
Petersdorf, S.H., Kopecky, K.J., Slovak, M., et al. (2013) A Phase 3 Study of Gemtuzumab Ozogamicin during Induction and Postconsolidation Therapy in Younger Patients with Acute Myeloid Leukemia. Blood, 121, 4854-4860. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Amadori, S., Suciu, S., Selleslag, D., et al. (2016) Gemtuzumab Ozogamicin versus Best Supportive Care in Older Patients with Newly Diagnosed Acute Myeloid Leukemia Unsuitable for Intensive Chemotherapy: Results of the Randomized Phase III EORTCGIMEMA AML-19 Trial. Journal of Clinical Oncology, 34, 972-979.
|
|
[19]
|
Castaigne, S., Pautas, C., Terré, C., et al. (2012) Effect of Gemtuzumab Ozogamicin on Survival of Adult Patients with De-Novo Acute Myeloid Leukaemia (ALFA-0701): A Randomised, Open-Label, Phase 3 Study. The Lancet, 379, 1508-1516. [Google Scholar] [CrossRef]
|
|
[20]
|
Taksin, A., Legrand, O., Raffoux, E., et al. (2007) High Efficacy and Safety Profile of Fractionated Doses of Mylotarg as Induction Therapy in Patients with Relapsed Acute Myeloblastic Leukemia: A Prospective Study of the Alfa Group. Leukemia, 21, 66. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Brodersen, L.E., Gerbing, R.B., Pardo, M.L., et al. (2020) Morphologic Remission Status Is Limited Compared to ΔN Flow Cytometry: A Children’s Oncology Group AAML0531 Report. Blood Advances, 4, 5050-5061. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Katz, J., Janik, J.E. and Younes, A. (2011) Brentuximab Vedotin (SGN-35). Clinical Cancer Research, 17, 6428-6436. [Google Scholar] [CrossRef]
|
|
[23]
|
Senter, P.D. and Sievers, E.L. (2012) The Discovery and Development of Brentuximab Vedotin for Use in Relapsed Hodgkin Lymphoma and Systemic Anaplastic Large Cell Lymphoma. Nature Biotechnology, 30, 631-637. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Pro, B., Advani, R., Brice, P., et al. (2012) Brentuximab Vedotin (SGN-35) in Patients with Relapsed or Refractory Systemic Anaplastic Large-Cell Lymphoma: Results of a Phase II Study. Journal of Clinical Oncology, 30, 2190-2196. [Google Scholar] [CrossRef]
|
|
[25]
|
Younes, A., Gopal, A.K., Smith, S.E., et al. (2012) Results of a Pivotal Phase II Study of Brentuximab Vedotin for Patients with Relapsed or Refractory Hodgkin’s Lymphoma. Journal of Clinical Oncology, 30, 2183-2189. [Google Scholar] [CrossRef]
|
|
[26]
|
Prince, H.M., Kim, Y.H., Horwitz, S.M., et al. (2017) Brentuximab Vedotin or Physician’s Choice in CD30-Positive Cutaneous T-Cell Lymphoma (ALCANZA): An International, Open-Label, Randomised, Phase 3, Multicentre Trial. The Lancet, 390, 555-566. [Google Scholar] [CrossRef]
|
|
[27]
|
Connors, J.M., Jurczak, W., Straus, D.J., et al. (2018) Brentuximab Vedotin with Chemotherapy for Stage III or IV Hodgkin’s Lymphoma. The New England Journal of Medicine, 378, 331-344. [Google Scholar] [CrossRef]
|
|
[28]
|
Horwitz, S., O’Connor, O.A., Pro, B., et al. (2019) Brentuximab Vedotin with Chemotherapy for CD30-Positive Peripheral T-Cell Lymphoma (ECHELON-2): A Global, Double-Blind, Randomised, Phase 3 Trial. The Lancet, 393, 229-240. [Google Scholar] [CrossRef]
|
|
[29]
|
Amiri-Kordestani, L., Blumenthal, G.M., Xu, Q.C., et al. (2014) FDA Approval: Ado-Trastuzumab Emtansine for the Treatment of Patients with HER2-Positive Metastatic Breast Cancer. Clinical Cancer Research, 20, 4436-4441. [Google Scholar] [CrossRef]
|
|
[30]
|
Verma, S., Miles, D., Gianni, L., et al. (2012) Trastuzumab Emtansine for HER2-Positive Advanced Breast Cancer. The New England Journal of Medicine, 367, 1783-1791. [Google Scholar] [CrossRef]
|
|
[31]
|
Krop, I.E., Kim, S.-B., Martin, A.G., Lorusso, P.M., Ferrero, J.-M., Badovinac-Crnjevic, T., Hoersch, S., Smitt, M. and Wildiers, H. (2017) Trastuzumab Emtansine versus Treatment of Physician’s Choice in Patients with Previously Treated HER2-Positive Metastatic Breast Cancer (TH3RESA): Final Overall Survival Results from a Randomised Open-Label Phase 3 Trial. The Lancet Oncology, 18, 743-754. [Google Scholar] [CrossRef]
|
|
[32]
|
Von Minckwitz, G., Huang, C.S., et al. (2019) Trastuzumab Emtansine for Residual Invasive HER2-Positive Breast Cancer. The New England Journal of Medicine, 380, 617-628.
|
|
[33]
|
Wynne, J., Wright, D. and Stock, W. (2019) Inotuzumab: From Preclinical Development to Success in B-Cell Acute Lymphoblastic Leukemia. Blood Advances, 3, 96-104. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Kantarjian, H.M., DeAngelo, D.J., Advani, A.S., et al. (2017) Hepatic Adverse Event Profile of Inotuzumab Ozogamicin in Adult Patients with Relapsed or Refractory Acute Lymphoblastic Leukaemia: Results from the Open-Label, Randomised, Phase 3 INO-VATE Study. The Lancet Haematology, 4, e387-e398. [Google Scholar] [CrossRef]
|
|
[35]
|
Pfeifer, M., Zheng, B., Erdmann, T., et al. (2015) Anti-CD22 and Anti-CD79B Antibody Drug Conjugates Are Active in Different Molecular Diffuse Large B-Cell Lymphoma Subtypes. Leukemia, 29, 1578-1586. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Sehn, L.H., Herrera, A.F., Flowers, C.R., et al. (2020) Polatuzumab Vedotin in Relapsed or Refractory Diffuse Large B-Cell Lymphoma. Journal of Clinical Oncology, 38, 155-165. [Google Scholar] [CrossRef]
|
|
[37]
|
Rosenberg, J.E., O’Donnell, P.H., Balar, A.V., et al. (2019) Pivotal Trial of Enfortumab Vedotin in Urothelial Carcinoma after Platinum and Anti-Programmed Death 1/Programmed Death Ligand 1 Therapy. Journal of Clinical Oncology, 37, 2592. [Google Scholar] [CrossRef]
|
|
[38]
|
Modi, S., Saura, C., Yamashita, T., et al. (2020) Trastuzumab Deruxtecan in Previously Treated HER2-Positive Breast Cancer. The New England Journal of Medicine, 382, 610-621. [Google Scholar] [CrossRef]
|
|
[39]
|
Shitara, K., Bang, Y.J., Iwasa, S., et al. (2020) Trastuzumab Deruxtecan in Previously Treated HER2-Positive Gastric Cancer. The New England Journal of Medicine, 382, 2419-2430. [Google Scholar] [CrossRef]
|
|
[40]
|
Siena, S., Di Bartolomeo, M., Raghav, K., et al. (2021) Trastuzumab Deruxtecan (DS-8201) in Patients with HER2-Expressing Metastatic Colorectal Cancer (DESTINY-CRC01): A Multicentre, Open-Label, Phase 2 Trial. The Lancet Oncology, 22, 779-789. [Google Scholar] [CrossRef]
|
|
[41]
|
Starodub, A.N., Ocean, A.J., Shah, M.A., et al. (2015) First-in-Human Trial of a Novel Anti-Trop-2 Antibody-SN-38 Conjugate, Sacituzumab Govitecan, for the Treatment of Diverse Metastatic Solid Tumors. Clinical Cancer Research, 21, 3870-3878. [Google Scholar] [CrossRef]
|
|
[42]
|
Bardia, A., Mayer, I.A., et al. (2019) Sacituzumab Govitecanhziy in Refractory Metastatic Triple-Negative Breast Cancer. The New England Journal of Medicine, 380, 741-751. [Google Scholar] [CrossRef]
|
|
[43]
|
Bardia, A., Hurvitz, S.A., Tolaney, S.M., et al. (2021) Sacituzumab Govitecan in Metastatic Triple-Negative Breast Cancer. The New England Journal of Medicine, 384, 1529-1541.
|
|
[44]
|
Tagawa, S.T., Balar, A.V., Petrylak, D.P., et al. (2021) TROPHY-U-01: A Phase II Open-Label Study of Sacituzumab Govitecan in Patients with Metastatic Urothelial Carcinoma Progressing after Platinum-Based Chemotherapy and Checkpoint Inhibitors. Journal of Clinical Oncology, 39, 2474-2485. [Google Scholar] [CrossRef]
|
|
[45]
|
Lonial, S., Lee, H.C., Badros, A., et al. (2020) Belantamab Mafodotin for Relapsed or Refractory Multiple Myeloma (DREAMM-2): A Two-Arm, Randomised, Open-Label, Phase 2 Study. The Lancet Oncology, 21, 207-221.
|
|
[46]
|
Caimi, P.F., Ai, W., Alderuccio, J.P., et al. (2021) Loncastuximab Tesirine in Relapsed or Refractory Diffuse Large B-Cell Lymphoma (LOTIS-2): A Multicentre, Open-Label, Single-Arm, Phase 2 Trial. The Lancet Oncology, 22, 790-800. [Google Scholar] [CrossRef]
|